Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
JAMA Netw Open ; 5(1): e2141911, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34982160

ABSTRACT

Importance: Newborn screening for Angelman syndrome (AS), Prader-Willi syndrome (PWS), and chromosome 15 duplication syndrome (Dup15q) may lead to benefit from early diagnosis and treatment. Objective: To examine the feasibility of newborn screening for these chromosome 15 imprinting disorders at population scale. Design, Setting, and Participants: In this diagnostic study, the validation data set for the first-tier SNRPN test, called methylation-specific quantitative melt analysis (MS-QMA), included 109 PWS, 48 AS, 9 Dup15q, and 1190 population control newborn blood spots (NBS) and peripheral tissue samples from participants recruited from January 2000 to December 2016. The test data set included NBS samples from 16 579 infants born in 2011. Infants with an NBS identified as positive for PWS, AS, or Dup15q by the first-tier test were referred for droplet digital polymerase chain reaction, real-time polymerase chain reaction, and low-coverage whole-genome sequencing for confirmatory testing. Data analyses were conducted between February 12, 2015, and August 15, 2020. Results: In the validation data set, the median age for the 77 patients with PWS was 3.00 years (IQR, 0.01-44.50 years); for the 46 patients with AS, 2.76 years (IQR, 0.028 to 49.00 years); and for the 9 patients with Dup15q, 4.00 years (IQR, 1.00 to 28.00 years). Thirty-eight patients (51.4%) in the PWS group, 20 patients (45.5%) in the AS group, and 6 patients (66.7%) in the Dup15q group who had sex reported were male. The validation data set showed MS-QMA sensitivity of 99.0% for PWS, 93.8% for AS, and 77.8% for Dup15q; specificity of 100% for PWS, AS, and Dup15q; positive predictive and negative predictive values of 100% for PWS and AS; and a positive predictive value of 87.5% and negative predictive value of 100% for Dup15q. In the test data set of NBS samples from 16 579 infants, 92 had a positive test result using a methylation ratio cut-off of 3 standard deviations from the mean. Of these patients, 2 were confirmed to have PWS; 2, AS; and 1, maternal Dup15q. With the use of more conservative PWS- and AS-specific thresholds for positive calls from the validation data set, 9 positive NBS results were identified by MS-QMA in this cohort. The 2 PWS and 2 AS calls were confirmed by second-tier testing, but the 1 Dup15q case was not confirmed. Together, these results provided prevalence estimates of 1 in 8290 for both AS and PWS and 1 in 16 579 for maternal Dup15q, with positive predictive values for first-tier testing at 67.0% for AS, 33.0% for PWS, and 44.0% for combined detection of chromosome 15 imprinting disorders for the validation data set. Conclusions and Relevance: The findings of this diagnostic study suggest that it is feasible to screen for all chromosome 15 imprinting disorders using SNRPN methylation analysis, with 5 individuals identified with these disorders out of 16 579 infants screened.


Subject(s)
Angelman Syndrome , Chromosomes, Human, Pair 15/genetics , Genetic Testing/methods , Neonatal Screening/methods , Prader-Willi Syndrome , Adolescent , Adult , Angelman Syndrome/diagnosis , Angelman Syndrome/genetics , Child , Child, Preschool , Chromosome Duplication/genetics , DNA Methylation/genetics , Feasibility Studies , Female , Humans , Infant , Infant, Newborn , Male , Prader-Willi Syndrome/diagnosis , Prader-Willi Syndrome/genetics , Young Adult
2.
Genes (Basel) ; 12(6)2021 05 24.
Article in English | MEDLINE | ID: mdl-34073864

ABSTRACT

We describe a female with a 72 CGG FMR1 premutation (PM) (CGG 55-199) and family history of fragile X syndrome (FXS), referred for prenatal testing. The proband had a high risk of having an affected pregnancy with a full mutation allele (FM) (CGG > 200), that causes FXS through hypermethylation of the FMR1 promoter. The CGG sizing analysis in this study used AmplideX triplet repeat primed polymerase chain reaction (TP-PCR) and long-range methylation sensitive PCR (mPCR). These methods detected a 73 CGG PM allele in the proband's blood, and a 164 CGG PM allele in her male cultured chorionic villus sample (CVS). In contrast, the Southern blot analysis showed mosaicism for: (i) a PM (71 CGG) and an FM (285-768 CGG) in the proband's blood, and (ii) a PM (165 CGG) and an FM (408-625 CGG) in the male CVS. The FMR1 methylation analysis, using an EpiTYPER system in the proband, showed levels in the range observed for mosaic Turner syndrome. This was confirmed by molecular and cytogenetic karyotyping, identifying 45,X0/46,XX/47,XXX lines. In conclusion, this case highlights the importance of Southern blot in pre- and postnatal testing for presence of an FM, which was not detected using AmplideX TP-PCR or mPCR in the proband and her CVS.


Subject(s)
Alleles , Chromosomes, Human, X/genetics , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Mosaicism , Adult , Chorionic Villi Sampling/methods , Female , Fragile X Syndrome/diagnosis , Genetic Testing/methods , Humans , Pregnancy , Trinucleotide Repeat Expansion
3.
Am J Med Genet A ; 185(5): 1498-1503, 2021 05.
Article in English | MEDLINE | ID: mdl-33544979

ABSTRACT

Fragile X syndrome (FXS) is caused by CGG expansions of ≥200 repeats (full mutation: FM). Typically, FM causes abnormal methylation of the FMR1 promoter and silencing of FMR1, leading to reduction of FMRP, a protein essential for normal neurodevelopment. However, if unmethylated, these alleles cause over-expression of FMR1 mRNA which has been associated with Fragile X Tremor and Ataxia Syndrome (FXTAS), a late onset disorder. This report details the molecular and clinical profile of an asymptomatic male (29 years) identified as a result of cascade testing who was found to have a rare unmethylated FM (UFM) allele, as well as premutation (PM: 55-199 CGG) size alleles in multiple tissues. Full-scale IQ was within the normal range and minimal features of autism were observed. Southern blot analysis identified FM smears in blood (220-380 CGG) and saliva (212-378 CGG). A PM of 159 CGG was identified in blood and saliva. FMR1 promoter methylation analysis showed all alleles to be unmethylated. FMR1 mRNA levels were greater than fivefold of median levels in typically developing controls and males with FXS mosaic for PM and FM alleles. Issues raised during genetic counseling related to risk for FXTAS associated with UFM and elevated FMR1 mRNA levels, as well as, reproductive options, with implications for future practice.


Subject(s)
Ataxia/genetics , Autistic Disorder/genetics , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Tremor/genetics , Adult , Alleles , Ataxia/pathology , Autistic Disorder/physiopathology , DNA Methylation/genetics , Fragile X Syndrome/pathology , Genetic Carrier Screening , Humans , Male , Mutation/genetics , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , Tremor/pathology , Trinucleotide Repeat Expansion/genetics , Young Adult
4.
Transl Psychiatry ; 10(1): 362, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33116122

ABSTRACT

Chromosome 15 (C15) imprinting disorders including Prader-Willi (PWS), Angelman (AS) and chromosome 15 duplication (Dup15q) syndromes are severe neurodevelopmental disorders caused by abnormal expression of genes from the 15q11-q13 region, associated with abnormal DNA methylation and/or copy number changes. This study compared changes in mRNA levels of UBE3A and SNORD116 located within the 15q11-q13 region between these disorders and their subtypes and related these to the clinical phenotypes. The study cohort included 58 participants affected with a C15 imprinting disorder (PWS = 27, AS = 21, Dup15q = 10) and 20 typically developing controls. Semi-quantitative analysis of mRNA from peripheral blood mononuclear cells (PBMCs) was performed using reverse transcription droplet digital polymerase chain reaction (PCR) for UBE3A and SNORD116 normalised to a panel of internal control genes determined using the geNorm approach. Participants completed an intellectual/developmental functioning assessment and the Autism Diagnostic Observation Schedule-2nd Edition. The Dup15q group was the only condition with significantly increased UBE3A mRNA levels when compared to the control group (p < 0.001). Both the AS and Dup15q groups also had significantly elevated SNORD116 mRNA levels compared to controls (AS: p < 0.0001; Dup15q: p = 0.002). Both UBE3A and SNORD116 mRNA levels were positively correlated with all developmental functioning scores in the deletion AS group (p < 0.001), and autism features (p < 0.001) in the non-deletion PWS group. The findings suggest presence of novel interactions between expression of UBE3A and SNORD116 in PBMCs and brain specific processes underlying motor and language impairments and autism features in these disorders.


Subject(s)
Autistic Disorder , Genomic Imprinting , RNA, Small Nucleolar/genetics , Ubiquitin-Protein Ligases , Angelman Syndrome/genetics , Chromosomes, Human, Pair 15/genetics , Humans , Leukocytes, Mononuclear/metabolism , Prader-Willi Syndrome/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
5.
Int J Mol Sci ; 21(20)2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33086711

ABSTRACT

Fragile X syndrome (FXS) is a leading single-gene cause of intellectual disability (ID) with autism features. This study analysed diagnostic and prognostic utility of the Fragile X-Related Epigenetic Element 2 DNA methylation (FREE2m) assessed by Methylation Specific-Quantitative Melt Analysis and the EpiTYPER system, in retrospectively retrieved newborn blood spots (NBS) and newly created dried blood spots (DBS) from 65 children with FXS (~2-17 years). A further 168 NBS from infants from the general population were used to establish control reference ranges, in both sexes. FREE2m analysis showed sensitivity and specificity approaching 100%. In FXS males, NBS FREE2m strongly correlated with intellectual functioning and autism features, however associations were not as strong for FXS females. Fragile X mental retardation 1 gene (FMR1) mRNA levels in blood were correlated with FREE2m in both NBS and DBS, for both sexes. In females, DNAm was significantly increased at birth with a decrease in childhood. The findings support the use of FREE2m analysis in newborns for screening, diagnostic and prognostic testing in FXS.


Subject(s)
Autistic Disorder/genetics , DNA Methylation/genetics , Fragile X Syndrome/genetics , Intellectual Disability/genetics , Adolescent , Child , Child, Preschool , Cohort Studies , Epigenesis, Genetic , Female , Fragile X Mental Retardation Protein/genetics , Humans , Infant , Infant, Newborn , Male , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...