Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Chem Phys Lipids ; 263: 105421, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39067642

ABSTRACT

This study explores the impact of the antimicrobial peptide magainin 2 (Mag2) on lipid bilayers with varying compositions. We employed high-resolution atomic force microscopy (AFM) to reveal a dynamic spectrum of structural changes induced by Mag2. Our AFM imaging unveiled distinct structural alterations in zwitterionic POPC bilayers upon Mag2 exposure, notably the formation of nanoscale depressions within the bilayer surface, which we term as "surface pores" to differentiate them from transmembrane pores. These surface pores are characterized by a limited depth that does not appear to fully traverse the bilayer and reach the opposing leaflet. Additionally, our AFM-based force spectroscopy investigation on POPC bilayers revealed a reduction in bilayer puncture force (FP) and Young's modulus (E) upon Mag2 interaction, indicating a weakening of bilayer stability and increased flexibility, which may facilitate peptide insertion. The inclusion of anionic POPG into POPC bilayers elucidated its modulatory effects on Mag2 activity, highlighting the role of lipid composition in peptide-bilayer interactions. In contrast to surface pores, Mag2 treatment of E. coli total lipid extract bilayers resulted in increased surface roughness, which we describe as a fluctuation-like morphology. We speculate that the weaker cohesive interactions between heterogeneous lipids in E. coli bilayers may render them more susceptible to Mag2-induced perturbations. This could lead to widespread disruptions manifested as surface fluctuations throughout the bilayer, rather than the formation of well-defined pores. Together, our findings of nanoscale bilayer perturbations provide useful insights into the molecular mechanisms governing Mag2-membrane interactions.


Subject(s)
Lipid Bilayers , Magainins , Microscopy, Atomic Force , Phosphatidylcholines , Lipid Bilayers/chemistry , Magainins/chemistry , Phosphatidylcholines/chemistry , Phosphatidylglycerols/chemistry , Spectrum Analysis
2.
Biochim Biophys Acta Biomembr ; 1866(7): 184373, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39047857

ABSTRACT

Transmembrane peptides play important roles in many biological processes by interacting with lipid membranes. This study investigates how the transmembrane domain of the influenza A virus M2 protein, M2TM, affects the structure and mechanics of model lipid bilayers. Atomic force microscopy (AFM) imaging revealed small decreases in bilayer thickness with increasing peptide concentrations. AFM-based force spectroscopy experiments complemented by theoretical model analysis demonstrated significant decreases in bilayer's Young's modulus (E) and lateral area compressibility modulus (KA). This suggests that M2TM disrupts the cohesive interactions between neighboring lipid molecules, leading to a decrease in both the bilayer's resistance to indentation (E) and its ability to resist lateral compression/expansion (KA). The large decreases in bilayer elastic parameters (i.e., E and KA) contrast with small changes in bilayer thickness, implying that bilayer mechanics are not solely dictated by bilayer thickness in the presence of transmembrane peptides. The observed significant reduction in bilayer mechanical properties suggests a softening effect on the bilayer, potentially facilitating membrane curvature generation, a crucial step for M2-mediated viral budding. In parallel, our Raman spectroscopy revealed small but statistically significant changes in hydrocarbon chain vibrational dynamics, indicative of minor disordering in lipid chain conformation. Our findings provide useful insights into the complex interplay between transmembrane peptides and lipid bilayers, highlighting the significance of peptide-lipid interactions in modulating membrane structure, mechanics, and molecular dynamics.


Subject(s)
Influenza A virus , Lipid Bilayers , Microscopy, Atomic Force , Viral Matrix Proteins , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/metabolism , Influenza A virus/chemistry , Influenza A virus/metabolism , Peptides/chemistry , Protein Domains , Elastic Modulus , Viroporin Proteins
3.
Biophysica ; 3(4): 582-597, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38737720

ABSTRACT

Understanding the membrane interactions of the N-terminal 17 residues of the huntingtin protein (HttN) is essential for unraveling its role in cellular processes and its impact on huntingtin misfolding. In this study, we used atomic force microscopy (AFM) to examine the effects of lipid specificity in mediating bilayer perturbations induced by HttN. Across various lipid environments, the peptide consistently induced bilayer disruptions in the form of holes. Notably, our results unveiled that cholesterol enhanced bilayer perturbation induced by HttN, while phosphatidylethanolamine (PE) lipids suppressed hole formation. Furthermore, anionic phosphatidylglycerol (PG) and cardiolipin lipids, along with cholesterol at high concentrations, promoted the formation of double-bilayer patches. This unique structure suggests that the synergy among HttN, anionic lipids, and cholesterol can enhance bilayer fusion, potentially by facilitating lipid intermixing between adjacent bilayers. Additionally, our AFM-based force spectroscopy revealed that HttN enhanced the mechanical stability of lipid bilayers, as evidenced by an elevated bilayer puncture force. These findings illuminate the complex interplay between HttN and lipid membranes and provide useful insights into the role of lipid composition in modulating membrane interactions with the huntingtin protein.

SELECTION OF CITATIONS
SEARCH DETAIL