Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Sci Rep ; 14(1): 14595, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918496

ABSTRACT

There are two known mechanisms by which natural killer (NK) cells recognize and kill diseased targets: (i) direct killing and (ii) antibody-dependent cell-mediated cytotoxicity (ADCC). We investigated an indirect NK cell activation strategy for the enhancement of human NK cell killing function. We did this by leveraging the fact that toll-like receptor 9 (TLR9) agonism within pools of human peripheral blood mononuclear cells (PBMCs) results in a robust interferon signaling cascade that leads to NK cell activation. After TLR9 agonist stimulation, NK cells were enriched and incorporated into assays to assess their ability to kill tumor cell line targets. Notably, differential impacts of TLR9 agonism were observed-direct killing was enhanced while ADCC was not increased. To ensure that the observed differential effects were not attributable to differences between human donors, we recapitulated the observation using our Natural Killer-Simultaneous ADCC and Direct Killing Assay (NK-SADKA) that controls for human-to-human differences. Next, we observed a treatment-induced decrease in NK cell surface CD16-known to be shed by NK cells post-activation. Given the essential role of CD16 in ADCC, such shedding could account for the observed differential impact of TLR9 agonism on NK cell-mediated killing capacity.


Subject(s)
Antibody-Dependent Cell Cytotoxicity , Killer Cells, Natural , Toll-Like Receptor 9 , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Antibody-Dependent Cell Cytotoxicity/drug effects , Toll-Like Receptor 9/agonists , Toll-Like Receptor 9/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/drug effects , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Receptors, IgG/metabolism , Receptors, IgG/immunology , Cell Line, Tumor , Cytotoxicity, Immunologic/drug effects
2.
JCI Insight ; 9(10)2024 May 22.
Article in English | MEDLINE | ID: mdl-38775157

ABSTRACT

Redundant tumor microenvironment (TME) immunosuppressive mechanisms and epigenetic maintenance of terminal T cell exhaustion greatly hinder functional antitumor immune responses in chronic lymphocytic leukemia (CLL). Bromodomain and extraterminal (BET) proteins regulate key pathways contributing to CLL pathogenesis and TME interactions, including T cell function and differentiation. Herein, we report that blocking BET protein function alleviates immunosuppressive networks in the CLL TME and repairs inherent CLL T cell defects. The pan-BET inhibitor OPN-51107 reduced exhaustion-associated cell signatures resulting in improved T cell proliferation and effector function in the Eµ-TCL1 splenic TME. Following BET inhibition (BET-i), TME T cells coexpressed significantly fewer inhibitory receptors (IRs) (e.g., PD-1, CD160, CD244, LAG3, VISTA). Complementary results were witnessed in primary CLL cultures, wherein OPN-51107 exerted proinflammatory effects on T cells, regardless of leukemic cell burden. BET-i additionally promotes a progenitor T cell phenotype through reduced expression of transcription factors that maintain terminal differentiation and increased expression of TCF-1, at least in part through altered chromatin accessibility. Moreover, direct T cell effects of BET-i were unmatched by common targeted therapies in CLL. This study demonstrates the immunomodulatory action of BET-i on CLL T cells and supports the inclusion of BET inhibitors in the management of CLL to alleviate terminal T cell dysfunction and potentially enhance tumoricidal T cell activity.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , T-Lymphocytes , Tumor Microenvironment , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects , Humans , Animals , Mice , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Hepatocyte Nuclear Factor 1-alpha/metabolism , Hepatocyte Nuclear Factor 1-alpha/genetics , Cell Proliferation/drug effects , Bromodomain Containing Proteins , Proteins
3.
Cancer Res Commun ; 4(5): 1328-1343, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38687198

ABSTRACT

Chronic lymphocytic leukemia (CLL) cell survival and growth is fueled by the induction of B-cell receptor (BCR) signaling within the tumor microenvironment (TME) driving activation of NFκB signaling and the unfolded protein response (UPR). Malignant cells have higher basal levels of UPR posing a unique therapeutic window to combat CLL cell growth using pharmacologic agents that induce accumulation of misfolded proteins. Frontline CLL therapeutics that directly target BCR signaling such as Bruton tyrosine kinase (BTK) inhibitors (e.g., ibrutinib) have enhanced patient survival. However, resistance mechanisms wherein tumor cells bypass BTK inhibition through acquired BTK mutations, and/or activation of alternative survival mechanisms have rendered ibrutinib ineffective, imposing the need for novel therapeutics. We evaluated SpiD3, a novel spirocyclic dimer, in CLL cell lines, patient-derived CLL samples, ibrutinib-resistant CLL cells, and in the Eµ-TCL1 mouse model. Our integrated multi-omics and functional analyses revealed BCR signaling, NFκB signaling, and endoplasmic reticulum stress among the top pathways modulated by SpiD3. This was accompanied by marked upregulation of the UPR and inhibition of global protein synthesis in CLL cell lines and patient-derived CLL cells. In ibrutinib-resistant CLL cells, SpiD3 retained its antileukemic effects, mirrored in reduced activation of key proliferative pathways (e.g., PRAS, ERK, MYC). Translationally, we observed reduced tumor burden in SpiD3-treated Eµ-TCL1 mice. Our findings reveal that SpiD3 exploits critical vulnerabilities in CLL cells including NFκB signaling and the UPR, culminating in profound antitumor properties independent of TME stimuli. SIGNIFICANCE: SpiD3 demonstrates cytotoxicity in CLL partially through inhibition of NFκB signaling independent of tumor-supportive stimuli. By inducing the accumulation of unfolded proteins, SpiD3 activates the UPR and hinders protein synthesis in CLL cells. Overall, SpiD3 exploits critical CLL vulnerabilities (i.e., the NFκB pathway and UPR) highlighting its use in drug-resistant CLL.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Signal Transduction , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Humans , Animals , Mice , Signal Transduction/drug effects , Piperidines/pharmacology , Piperidines/therapeutic use , Cell Line, Tumor , Unfolded Protein Response/drug effects , Adenine/analogs & derivatives , Adenine/pharmacology , Drug Resistance, Neoplasm/drug effects , NF-kappa B/metabolism , Spiro Compounds/pharmacology , Spiro Compounds/therapeutic use , Cell Survival/drug effects , Tumor Microenvironment/drug effects , Receptors, Antigen, B-Cell/metabolism , Cell Proliferation/drug effects
5.
Int J Mol Sci ; 24(3)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36768631

ABSTRACT

The gut microbiome is increasingly being recognized as an important immunologic environment, with direct links to the host immune system. The scale of the gut microbiome's genomic repertoire extends the capacity of its host's genome by providing additional metabolic output, and the close communication between gut microbiota and mucosal immune cells provides a continued opportunity for immune education. The relationship between the gut microbiome and the host immune system has important implications for oncologic disease, including lymphoma, a malignancy derived from within the immune system itself. In this review, we explore past and recent discoveries describing the role that bacterial populations play in lymphomagenesis, diagnosis, and therapy. We highlight key relationships within the gut microbiome-immune-oncology axis that present exciting opportunities for directed interventions intended to shape the microbiome for therapeutic effect. We conclude with a limited summary of active clinical trials targeting the microbiome in hematologic malignancies, along with future directions on gut microbiome investigations within lymphoid malignancies.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Neoplasms , Humans , Gastrointestinal Microbiome/genetics , Bacteria/metabolism
6.
Rheumatol Int ; 43(2): 323-333, 2023 02.
Article in English | MEDLINE | ID: mdl-36205758

ABSTRACT

A strong correlation between lupus nephritis (LN), disease activity, and serum beta 2-microglobulin (b2MG) was observed. The current study examines the correlation between serum b2MG and renal involvement, damage score, and disease activity in systemic lupus erythematosus (SLE) patients. One hundred SLE patients from Ain Shams University Hospital were enrolled and categorized into two groups. Group I had 40 patients with negative b2MG, while Group II had 60 patients with positive b2MG levels. Medical history, clinical examination, and assessing disease activity based on SLE disease activity index (SLEDAI-2 K), and damage score were recorded for all patients. Laboratory examinations, such as serum b2MG, complete blood count, blood urea nitrogen (BUN), serum creatinine, glomerular filtration rate (GFR), urine analysis, 24 h urinary protein excretion, Antinuclear antibodies (ANA), anti-dsDNA antibody, and serum complement (C3, C4). BUN, 24 h urinary protein, serum creatinine, active urinary sediment, SLEDAI score, and damage score were all elevated in group II compared to group I (p < 0.001). There is a positive correlation between serum b2MG and 24 h urinary protein, BUN, serum creatinine, disease activity, and damage score (p < 0.001), while it was negatively correlated with GFR, C3, and C4 (p < 0.001). Serum b2MG has proven to be a predictor of LN in SLE patients (Sensitivity 92.45%, Specificity 74.47%), also being a predictor of the activity of the disease as well as damage index (Sensitivity 96.67%, Specificity 85%) (Sensitivity 92.45%, Specificity 74.47%), respectively. Serum b2MG level can be used as a valuable predictor for LN, clinical disease activity, and damage score.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Humans , Cross-Sectional Studies , beta 2-Microglobulin , Creatinine , Biomarkers
7.
Leuk Lymphoma ; 64(1): 87-97, 2023 01.
Article in English | MEDLINE | ID: mdl-36218226

ABSTRACT

The gut microbiome is an important feature of host immunity with associations to hematologic malignancies and cellular therapy. We evaluated the gut microbiome and dietary intake in patients with multiple myeloma undergoing autologous stem cell transplantation. Thirty patients were enrolled, and samples were collected at four timepoints: pre-transplant, engraftment, day +100 (D + 100), and 9-12 months post-transplant. Microbiome analysis demonstrated a loss of alpha diversity at the engraftment timepoint driven by decreases in Blautia, Ruminococcus, and Faecalibacterium genera and related to intravenous antibiotic exposure. Higher fiber intake was associated with increased relative abundance of Blautia at the pre-transplant timepoint. Lower alpha diversity at engraftment was associated with a partial response to therapy compared with complete response (CR) or very good partial response (VGPR) (CR/VGPR vs. PR, p < 0.05). We conclude that loss of bacterial diversity at engraftment may be associated with impaired response to stem cell transplantation in multiple myeloma.


Subject(s)
Gastrointestinal Microbiome , Hematopoietic Stem Cell Transplantation , Multiple Myeloma , Humans , Multiple Myeloma/therapy , Multiple Myeloma/pathology , Hematopoietic Stem Cell Transplantation/adverse effects , Treatment Outcome , Transplantation, Autologous , Disease-Free Survival , Antineoplastic Combined Chemotherapy Protocols , Stem Cell Transplantation/adverse effects
8.
Int J Mol Sci ; 25(1)2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38203728

ABSTRACT

In the era of targeted therapies, researchers have aimed to uncover the molecular drivers of malignant pathogenesis in lymphoid malignancies in an endeavor to develop effective therapeutic strategies [...].


Subject(s)
Neoplasms , Research Personnel , Humans
9.
Structure ; 30(9): 1224-1232.e5, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35716662

ABSTRACT

Emerging new variants of SARS-CoV-2 and inevitable acquired drug resistance call for the continued search of new pharmacological targets to fight the potentially fatal infection. Here, we describe the mechanisms by which the E protein of SARS-CoV-2 hijacks the human transcriptional regulator BRD4. We found that SARS-CoV-2 E is acetylated in vivo and co-immunoprecipitates with BRD4 in human cells. Bromodomains (BDs) of BRD4 bind to the C-terminus of the E protein, acetylated by human acetyltransferase p300, whereas the ET domain of BRD4 recognizes the unmodified motif of the E protein. Inhibitors of BRD4 BDs, JQ1 or OTX015, decrease SARS-CoV-2 infectivity in lung bronchial epithelial cells, indicating that the acetyllysine binding function of BDs is necessary for the virus fitness and that BRD4 represents a potential anti-COVID-19 target. Our findings provide insight into molecular mechanisms that contribute to SARS-CoV-2 pathogenesis and shed light on a new strategy to block SARS-CoV-2 infection.


Subject(s)
COVID-19 , Cell Cycle Proteins/metabolism , Coronavirus Envelope Proteins/metabolism , SARS-CoV-2/physiology , Transcription Factors/metabolism , COVID-19/virology , Humans , Nuclear Proteins/metabolism , Protein Binding , Protein Domains
10.
Int J Mol Sci ; 23(12)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35743155

ABSTRACT

B-cell chronic lymphocytic leukemia (CLL) results from intrinsic genetic defects and complex microenvironment stimuli that fuel CLL cell growth through an array of survival signaling pathways. Novel small-molecule agents targeting the B-cell receptor pathway and anti-apoptotic proteins alone or in combination have revolutionized the management of CLL, yet combination therapy carries significant toxicity and CLL remains incurable due to residual disease and relapse. Single-molecule inhibitors that can target multiple disease-driving factors are thus an attractive approach to combat both drug resistance and combination-therapy-related toxicities. We demonstrate that SRX3305, a novel small-molecule BTK/PI3K/BRD4 inhibitor that targets three distinctive facets of CLL biology, attenuates CLL cell proliferation and promotes apoptosis in a dose-dependent fashion. SRX3305 also inhibits the activation-induced proliferation of primary CLL cells in vitro and effectively blocks microenvironment-mediated survival signals, including stromal cell contact. Furthermore, SRX3305 blocks CLL cell migration toward CXCL-12 and CXCL-13, which are major chemokines involved in CLL cell homing and retention in microenvironment niches. Importantly, SRX3305 maintains its anti-tumor effects in ibrutinib-resistant CLL cells. Collectively, this study establishes the preclinical efficacy of SRX3305 in CLL, providing significant rationale for its development as a therapeutic agent for CLL and related disorders.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Cell Cycle Proteins/pharmacology , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Nuclear Proteins , Phosphatidylinositol 3-Kinases , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptors, Antigen, B-Cell/metabolism , Transcription Factors , Tumor Microenvironment
11.
Protein Sci ; 31(5): e4300, 2022 05.
Article in English | MEDLINE | ID: mdl-35481636

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 infection has led to socio-economic shutdowns and the loss of over 5 million lives worldwide. There is a need for the identification of therapeutic targets to treat COVID-19. SARS-CoV-2 spike is a target of interest for the development of therapeutic targets. We developed a robust SARS-CoV-2 S spike expression and purification protocol from insect cells and studied four recombinant SARS-CoV-2 spike protein constructs based on the original SARS-CoV-2 sequence using a baculovirus expression system: a spike protein receptor-binding domain that includes the SD1 domain (RBD) coupled to a fluorescent tag (S-RBD-eGFP), spike ectodomain coupled to a fluorescent tag (S-Ecto-eGFP), spike ectodomain with six proline mutations and a foldon domain (S-Ecto-HexaPro(+F)), and spike ectodomain with six proline mutations without the foldon domain (S-Ecto-HexaPro(-F)). We tested the yield of purified protein expressed from the insect cell lines Spodoptera frugiperda (Sf9) and Trichoplusia ni (Tni) and compared it to previous research using mammalian cell lines to determine changes in protein yield. We demonstrated quick and inexpensive production of functional glycosylated spike protein of high purity capable of recognizing and binding to the angiotensin converting enzyme 2 (ACE2) receptor. To further confirm functionality, we demonstrate binding of eGFP fused construct of the spike ectodomain (S-Ecto-eGFP) to surface ACE2 receptors on lung epithelial cells by flow cytometry analysis and show that it can be decreased by means of receptor manipulation (blockade or downregulation).


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Angiotensin-Converting Enzyme 2/genetics , Animals , Humans , Insecta/metabolism , Mammals , Pandemics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Proline , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
12.
Mol Biomed ; 3(1): 2, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35031886

ABSTRACT

Mantle cell lymphoma (MCL) is a subtype of non-Hodgkin's lymphoma characterized by poor prognosis. The complexity of MCL pathogenesis arises from aberrant activities of diverse signaling pathways, including BTK, PI3K-AKT-mTOR and MYC-BRD4. Here, we report that MCL-related signaling pathways can be altered by a single small molecule inhibitor, SRX3305. Binding and kinase activities along with resonance changes in NMR experiments reveal that SRX3305 targets both bromodomains of BRD4 and is highly potent in inhibition of the PI3K isoforms α, γ and δ, as well as BTK and the drug-resistant BTK mutant. Preclinical investigations herein reveal that SRX3305 perturbs the cell cycle, promotes apoptosis in MCL cell lines and shows dose dependent anti-proliferative activity in both MCL and drug-resistant MCL cells. Our findings underscore the effectiveness of novel multi-action small molecule inhibitors for potential treatment of MCL.

13.
iScience ; 24(9): 102931, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34557659

ABSTRACT

Mantle cell lymphoma (MCL) is an aggressive subtype of non-Hodgkin's lymphoma and one of the most challenging blood cancers to combat due to frequent relapse after treatment. Here, we developed the first-in-class BTK/PI3K/BRD4 axis inhibitor SRX3262, which simultaneously blocks three interrelated MCL driver pathways - BTK, PI3K-AKT-mTOR and MYC. SRX3262 concomitantly binds to BTK, PI3K, and BRD4, exhibits potent in vitro and in vivo activity against MCL, and overcomes the Ibrutinib resistance resulting from the BTK-C481S mutation. Our results reveal that SRX3262 inhibits IgM-induced BTK and AKT phosphorylation and abrogates binding of BRD4 to MYC loci. SRX3262 promotes c-MYC destabilization, induces cell cycle arrest and apoptosis, and shows antitumor activity in in vivo xenograft models. Together, our study provides mechanistic insights and rationale for the use of the triple BTK/PI3K/BRD4 activity inhibitors as a new approach to treat MCL.

14.
Biomedicines ; 9(4)2021 Apr 18.
Article in English | MEDLINE | ID: mdl-33919584

ABSTRACT

Effective therapeutics are urgently needed to counter infection and improve outcomes for patients suffering from COVID-19 and to combat this pandemic. Manipulation of epigenetic machinery to influence viral infectivity of host cells is a relatively unexplored area. The bromodomain and extraterminal (BET) family of epigenetic readers have been reported to modulate SARS-CoV-2 infection. Herein, we demonstrate apabetalone, the most clinical advanced BET inhibitor, downregulates expression of cell surface receptors involved in SARS-CoV-2 entry, including angiotensin-converting enzyme 2 (ACE2) and dipeptidyl-peptidase 4 (DPP4 or CD26) in SARS-CoV-2 permissive cells. Moreover, we show that apabetalone inhibits SARS-CoV-2 infection in vitro to levels comparable to those of antiviral agents. Taken together, our study supports further evaluation of apabetalone to treat COVID-19, either alone or in combination with emerging therapeutics.

15.
Microorganisms ; 8(12)2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33327403

ABSTRACT

There is a growing realization that endodontic infections are often polymicrobial, and may contain Candida spp. Despite this understanding, the development of new endodontic irrigants and models of pathogenesis remains limited to mono-species biofilm models and is bacterially focused. The purpose of this study was to develop and optimize an interkingdom biofilm model of endodontic infection and use this to test suitable anti-biofilm actives. Biofilms containing Streptococcus gordonii, Fusobacterium nucleatum, Porphyromonas gingivalis, and Candida albicans were established from ontological analysis. Biofilms were optimized in different media and atmospheric conditions, prior to quantification and imaging, and subsequently treated with chlorhexidine, EDTA, and chitosan. These studies demonstrated that either media supplemented with serum were equally optimal for biofilm growth, which were dominated by S. gordonii, followed by C. albicans. Assessment of antimicrobial activity showed significant effectiveness of each antimicrobial, irrespective of serum. Chitosan was most effective (3 log reduction), and preferentially targeted C. albicans in both biofilm treatment and inhibition models. Chitosan was similarly effective at preventing biofilm growth on a dentine substrate. This study has shown that a reproducible and robust complex interkingdom model, which when tested with the antifungal chitosan, supports the notion of C. albicans as a key structural component.

16.
Bioorg Chem ; 105: 104439, 2020 12.
Article in English | MEDLINE | ID: mdl-33161252

ABSTRACT

The development of NSAIDs/iNOS inhibitor hybrids is a new strategy for the treatment of inflammatory diseases by suppression of the overproduction of PGE2 and NO. A novel series of aryl carboximidamides 4a-g and their cyclized 3-aryl-1,2,4-oxadiazoles 5a-g counterparts derived from indomethacin 1 were synthesized. Most of the target compounds displayed lower LPS-induced NO production IC50 in RAW 264.7 cells and potent in vitro iNOS and PGE2 inhibitory activity than indomethacin. Moreover, in carrageenan-induced rat paw oedema method, most of them exhibited higher in vivo anti-inflammatory activity than the reference drug indomethacin. Notably, 4 hrs after carrageenan injection, compound 4a proved to be the most potent anti-inflammatory agent in this study, with almost two- and eight-fold more active than the reference drugs indomethacin (1) and celecoxib, respectively. Compound 4a proved to be inhibitor to LPS-induced NO production, iNOS activity and PGE2 with IC50 of 10.70 µM, 2.31 µM, and 29 nM; respectively. Compounds 4a and 5b possessed the lowest ulcerogenic liabilities (35% and 38%, respectively) compared to 1. Histopathological analysis revealed that compounds 4a and 5b demonstrated reduced degeneration and healing of ulcers. Molecular docking studies into the catalytic binding pocket of the iNOS protein receptor (PDB ID: 1r35) showed good correlation with the obtained biological results. Parameters of Lipinski's rule of five and ADMET analysis were calculated where compound 4a had reasonable drug-likeness with acceptable physicochemical properties so it could be used as promising orally absorbed anti-inflammatory therapy and entitled to be used as future template for further investigations.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Dinoprostone/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Indomethacin/chemistry , Nitric Oxide Synthase Type II/antagonists & inhibitors , Oxadiazoles/chemical synthesis , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Carrageenan/chemistry , Celecoxib/metabolism , Dose-Response Relationship, Drug , Edema/drug therapy , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacokinetics , Humans , Lipopolysaccharides/chemistry , Male , Mice , Molecular Docking Simulation , Molecular Structure , Nitric Oxide/metabolism , Oxadiazoles/administration & dosage , Oxadiazoles/pharmacokinetics , Oximes/chemistry , RAW 264.7 Cells , Rats
17.
Life Sci ; 254: 117760, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32418889

ABSTRACT

AIM: The present study focused on the possible underlying protective mechanisms of UDCA against GNT-induced hepatic injury. METHODS: For achieving this goal, adult male rats were allocated into 4 groups: normal control (received vehicle), GNT (100 mg/kg, i.p. for 8 days), UDCA (60 mg/kg, P.O. for 15 days), and GNT + UDCA (received UDCA for 15 days and GNT started from the 7th day and lasted for 8 days). RESULTS: The results revealed that UDCA significantly improved GNT-induced hepatic injury, oxidative stress, apoptosis, and inflammatory response. Interestingly, UDCA inhibited apoptosis by marked down-regulation of the Bax gene, Caspase-3, and cleaved Caspase-3 protein expressions while the level of Bcl-xL gene significantly increased. Moreover, UDCA strongly inhibited the inflammatory response through the down-regulation of both NF-κB-p65 and TNF-α accompanied by IL-10 elevation. Furthermore, the obtained results ended with the restored of mitochondria function that confirmed by electron microscopy. Histological analysis showed that UDCA remarkably ameliorated the histopathological changes induced by GNT. SIGNIFICANCE: UDCA may be a promising agent that can be used to prevent hepatotoxicity observed in GNT treatment. This effect could be attributed to, at least in part, the ability of UDCA to modulate NF-κB-p65/TNF-α, Bax/Bcl-xl/Caspase-3, and eNOS/iNOS signaling pathways.


Subject(s)
Chemical and Drug Induced Liver Injury/prevention & control , Gentamicins/antagonists & inhibitors , Gentamicins/toxicity , Hepatocytes/drug effects , Signal Transduction/drug effects , Ursodeoxycholic Acid/pharmacology , Animals , Apoptosis/drug effects , Caspase 3/metabolism , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Drug Interactions , Hepatocytes/metabolism , Hepatocytes/pathology , Male , Mitochondria, Liver/drug effects , Mitochondria, Liver/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress/drug effects , Random Allocation , Rats , Rats, Wistar , Transcription Factor RelA/metabolism , Tumor Necrosis Factor-alpha/metabolism , bcl-2-Associated X Protein/metabolism , bcl-X Protein/metabolism
18.
Eur J Ophthalmol ; 28(5): 566-572, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29566539

ABSTRACT

PURPOSE: To evaluate light and electron microscopic changes of the anterior capsule and its epithelium after clear lens extraction of vitrectomized myopic eyes with silicone oil tamponade. METHODS: This prospective, controlled, non-randomized, interventional study included 20 anterior lens capsular specimens that were excised during combined clear lens extraction and silicone oil removal from previously vitrectomized highly myopic patients with silicone oil tamponade for previous retinal detachment surgeries. The specimens were examined via light microscopy and electron microscopy and compared with 20 anterior capsule specimens removed during clear lens extraction of non-vitrectomized highly myopic eyes. RESULTS: Light microscopic examination of clear lens anterior capsule specimens of vitrectomized myopic eyes filled with silicone oil showed relatively more flat cells with irregular outline of lens' epithelial cells with wide intercellular spaces, deeply stained nuclei, and multiple intracytoplasmic vacuoles. Scanning electron microscopy revealed collagenous surfaces filled with multiple pits, depressions, and abnormal deposits. Transmission electron microscopy revealed lens epithelial cells with apoptotic changes, many cytoplasmic vacuoles, and filopodia-like protrusions between lens epithelial cells and the capsule. Epithelial proliferation and multilayering were also observed. CONCLUSION: silicone oil may play a role in the development of apoptotic and histopathological changes in clear lens epithelial cells. Clarity of the lens at the time of silicone oil removal does not indicate an absence of cataractous changes. We found justification of combined clear lens extraction and silicone oil removal or combined phacovitrectomy when silicone oil injection is planned, but further long-term studies with larger patient groups are required.


Subject(s)
Anterior Capsule of the Lens/drug effects , Epithelial Cells/drug effects , Lens, Crystalline/drug effects , Silicone Oils/adverse effects , Adult , Anterior Capsule of the Lens/ultrastructure , Apoptosis , Drainage , Endotamponade , Epithelial Cells/ultrastructure , Female , Humans , Lens Implantation, Intraocular , Lens, Crystalline/ultrastructure , Male , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Middle Aged , Myopia, Degenerative/complications , Phacoemulsification , Prospective Studies , Retinal Detachment/surgery , Vitrectomy
19.
Cancer Discov ; 8(4): 458-477, 2018 04.
Article in English | MEDLINE | ID: mdl-29386193

ABSTRACT

Bromodomain and extra-terminal (BET) family proteins are key regulators of gene expression in cancer. Herein, we utilize BRD4 profiling to identify critical pathways involved in pathogenesis of chronic lymphocytic leukemia (CLL). BRD4 is overexpressed in CLL and is enriched proximal to genes upregulated or de novo expressed in CLL with known functions in disease pathogenesis and progression. These genes, including key members of the B-cell receptor (BCR) signaling pathway, provide a rationale for this therapeutic approach to identify new targets in alternative types of cancer. Additionally, we describe PLX51107, a structurally distinct BET inhibitor with novel in vitro and in vivo pharmacologic properties that emulates or exceeds the efficacy of BCR signaling agents in preclinical models of CLL. Herein, the discovery of the involvement of BRD4 in the core CLL transcriptional program provides a compelling rationale for clinical investigation of PLX51107 as epigenetic therapy in CLL and application of BRD4 profiling in other cancers.Significance: To date, functional studies of BRD4 in CLL are lacking. Through integrated genomic, functional, and pharmacologic analyses, we uncover the existence of BRD4-regulated core CLL transcriptional programs and present preclinical proof-of-concept studies validating BET inhibition as an epigenetic approach to target BCR signaling in CLL. Cancer Discov; 8(4); 458-77. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 371.


Subject(s)
Gene Expression Regulation, Leukemic , Isoxazoles/therapeutic use , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Nuclear Proteins/genetics , Pyridines/therapeutic use , Pyrroles/therapeutic use , Signal Transduction , Transcription Factors/genetics , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Cycle Proteins , Cell Line, Tumor , Cell Proliferation , Gene Expression Profiling , Humans , Isoxazoles/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/physiopathology , Mice , Mice, SCID , Nuclear Proteins/metabolism , Pyridines/pharmacology , Pyrroles/pharmacology , Transcription Factors/metabolism , Xenograft Model Antitumor Assays
20.
Blood ; 128(26): 3101-3112, 2016 12 29.
Article in English | MEDLINE | ID: mdl-27756747

ABSTRACT

Bruton's tyrosine kinase (BTK) is a critical mediator of survival in B-cell neoplasms. Although BTK inhibitors have transformed therapy in chronic lymphocytic leukemia (CLL), patients with high-risk genetics are at risk for relapse and have a poor prognosis. Identification of novel therapeutic strategies for this group of patients is an urgent unmet clinical need, and therapies that target BTK via alternative mechanisms may fill this niche. Herein, we identify a set of microRNAs (miRs) that target BTK in primary CLL cells and show that the histone deacetylase (HDAC) repressor complex is recruited to these miR promoters to silence their expression. Targeting the HDACs by using either RNA interference against HDAC1 in CLL or a small molecule inhibitor (HDACi) in CLL and mantle cell lymphoma restored the expression of the BTK-targeting miRs with loss of BTK protein and downstream signaling and consequent cell death. We have also made the novel and clinically relevant discovery that inhibition of HDAC induces the BTK-targeting miRs in ibrutinib-sensitive and resistant CLL to effectively reduce both wild-type and C481S-mutant BTK. This finding identifies a novel strategy that may be promising as a therapeutic modality to eliminate the C481S-mutant BTK clone that drives resistance to ibrutinib and provides the rationale for a combination strategy that includes ibrutinib to dually target BTK to suppress its prosurvival signaling.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell/enzymology , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , MicroRNAs/metabolism , Molecular Targeted Therapy , Protein-Tyrosine Kinases/metabolism , Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase , Animals , Benzofurans/pharmacology , Cell Survival/drug effects , Clone Cells , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Epigenesis, Genetic/drug effects , Gene Expression Profiling , Gene Silencing/drug effects , Histone Deacetylase Inhibitors/pharmacology , Humans , Hydroxamic Acids/pharmacology , Mice, Inbred C57BL , Mutant Proteins/metabolism , Neoplasm Proteins/metabolism , Piperidines , Promoter Regions, Genetic/genetics , Pyrazoles/pharmacology , Pyrimidines/pharmacology , RNA Interference/drug effects , Signal Transduction/drug effects , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL