Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Spectrosc ; : 37028241246292, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38629431

ABSTRACT

The semiconductor industry is undergoing a transformative phase, marked by the relentless drive for miniaturization and a constant demand for higher performance and energy efficiency. However, the reduction of metal-oxide-semiconductor field-effect transistor sizes for advanced technology nodes below 10 nm presents several challenges. In response, strained silicon technology has emerged as a key player, exploiting strain induction in the silicon crystal lattice to improve device performance. At the same time, there has been a growing need for characterization techniques that allow in-line monitoring of sample conditions during semiconductor manufacturing, as an alternative to traditional methods such as transmission electron microscopy or high-resolution X-ray diffraction, which have several limitations in terms of measurement time and sample destructiveness. This paper explores the application of advanced spectroscopic characterization techniques, in particular µ-Raman spectroscopy and tip-enhanced Raman spectroscopy (TERS), to meet the evolving needs of the semiconductor industry for quality control and failure analysis, increasingly requiring faster and non-destructive characterization techniques. µ-Raman provides insight into strain values and distributions of strained layers with different thicknesses and germanium concentrations, but its lateral resolution is constrained by the Abbe diffraction limit. TERS, on the other hand, emerges as a powerful non-destructive technique capable of overcoming diffraction limits by exploiting the combination of an atomic force microscope with a Raman spectrometer. This breakthrough makes it possible to estimate the chemical composition and induced strain in the lattice by evaluating the Raman peak position shifts in strained and unstrained silicon layers, providing crucial insights for nanoscale strain control. In particular, this paper focuses on the TERS characterization of Si0.7Ge0.3 epitaxial layers grown on a silicon-on-insulator device, demonstrating the effectiveness of this technique and the high lateral resolution that can be achieved.

2.
Ultramicroscopy ; 182: 112-117, 2017 11.
Article in English | MEDLINE | ID: mdl-28668736

ABSTRACT

In this contribution, we propose a protocol for analysis and accurate reconstruction of nanoporous materials by atom probe tomography (APT). The existence of several holes in porous materials makes both the direct APT analysis and reconstruction almost inaccessible. In the past, a solution has been proposed by filling pores with electron beam-induced deposition. Here, we present an alternative solution using an electro-chemical method allowing to fill even small and dense pores, making APT analysis possible. Concerning the 3D reconstruction, the microstructural features observed by electron tomography are used to finely calibrate the APT reconstruction parameters.

3.
Sci Rep ; 7(1): 5957, 2017 07 20.
Article in English | MEDLINE | ID: mdl-28729532

ABSTRACT

Er clustering plays a major role in hindering sufficient optical gain in Er-doped Si materials. For porous Si, the long-standing failure to govern the clustering has been attributed to insufficient knowledge of the several, concomitant and complex processes occurring during the electrochemical Er-doping. We propose here an alternative road to solve the issue: instead of looking for an equilibrium between Er content and light emission using 1-2% Er, we propose to significantly increase the electrochemical doping level to reach the filling the porous silicon pores with luminescent Er-rich material. To better understand the intricate and superposing phenomena of this process, we exploit an original approach based on needle electron tomography, EXAFS and photoluminescence. Needle electron tomography surprisingly shows a heterogeneous distribution of Er content in the silicon thin pores that until now couldn't be revealed by the sole use of scanning electron microscopy compositional mapping. Besides, while showing that pore filling leads to enhanced photoluminescence emission, we demonstrate that the latter is originated from both erbium oxide and silicate. These results give a much deeper understanding of the photoluminescence origin down to nanoscale and could lead to novel approaches focused on noteworthy enhancement of Er-related photoluminescence in porous silicon.

4.
Ultramicroscopy ; 160: 23-34, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26413937

ABSTRACT

An automatic procedure for electron tomography is presented. This procedure is adapted for specimens that can be fashioned into a needle-shaped sample and has been evaluated on inorganic samples. It consists of self-adapting denoising, automatic and accurate alignment including detection and correction of tilt axis, and 3D reconstruction. We propose the exploitation of a large amount of information of an electron tomography acquisition to achieve robust and automatic mixed Poisson-Gaussian noise parameter estimation and denoising using undecimated wavelet transforms. The alignment is made by mixing three techniques, namely (i) cross-correlations between neighboring projections, (ii) common line algorithm to get a precise shift correction in the direction of the tilt axis and (iii) intermediate reconstructions to precisely determine the tilt axis and shift correction in the direction perpendicular to that axis. Mixing alignment techniques turns out to be very efficient and fast. Significant improvements are highlighted in both simulations and real data reconstructions of porous silicon in high angle annular dark field mode and agglomerated silver nanoparticles in incoherent bright field mode. 3D reconstructions obtained with minimal user-intervention present fewer artefacts and less noise, which permits easier and more reliable segmentation and quantitative analysis. After careful sample preparation and data acquisition, the denoising procedure, alignment and reconstruction can be achieved within an hour for a 3D volume of about a hundred million voxels, which is a step toward a more routine use of electron tomography.

5.
Microsc Microanal ; 19(3): 716-25, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23570747

ABSTRACT

Doping of silicon with chalcogens (S, Se, Te) by femtosecond laser irradiation to concentrations well above the solubility limit leads to near-unity optical absorptance in the visible and infrared (IR) range and is a promising route toward silicon-based IR optoelectronics. However, open questions remain about the nature of the IR absorptance and in particular about the impact of the dopant distribution and possible role of dopant diffusion. Here we use electron tomography using a high-angle annular dark-field (HAADF) detector in a scanning transmission electron microscope (STEM) to extract information about the three-dimensional distribution of selenium dopants in silicon and correlate these findings with the optical properties of selenium-doped silicon. We quantify the tomography results to extract information about the size distribution and density of selenium precipitates. Our results show correlation between nanoscale distribution of dopants and the observed sub-band gap optical absorptance and demonstrate the feasibility of HAADF-STEM tomography for the investigation of dopant distribution in highly-doped semiconductors.

6.
Appl Spectrosc ; 65(9): 1046-50, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21929859

ABSTRACT

Attenuated total reflection (ATR) infrared absorption spectroscopy is a well-known vibrational spectroscopy technique for many different applications. In recent years this technique has been used to detect thin layer(s) lying on a solid substrate. Such a sample needs high pressure to ensure good optical contact between sample and prism and a p-polarization to enhance the signal to be detected. Such conditions have not been detailed in the literature regarding the effect of high pressure on the ATR measurement. This study shows the detrimental effect of high pressure on the ATR spectra. This effect is related to light depolarization induced by the germanium prism under high pressure. Moreover, the importance of polarizer position in the optical bench is highlighted. Indeed, due to the pressure-induced depolarization of the prism, the polarizer has to be placed before the prism to limit undesirable effects on the ATR spectrum baseline.

SELECTION OF CITATIONS
SEARCH DETAIL
...