Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Med Chem ; 67(7): 5837-5853, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38533580

ABSTRACT

The methyl-lysine reader protein SPIN1 plays important roles in various human diseases. However, targeting methyl-lysine reader proteins has been challenging. Very few cellularly active SPIN1 inhibitors have been developed. We previously reported that our G9a/GLP inhibitor UNC0638 weakly inhibited SPIN1. Here, we present our comprehensive structure-activity relationship study that led to the discovery of compound 11, a dual SPIN1 and G9a/GLP inhibitor, and compound 18 (MS8535), a SPIN1 selective inhibitor. We solved the cocrystal structure of SPIN1 in complex with 11, confirming that 11 occupied one of the three Tudor domains. Importantly, 18 displayed high selectivity for SPIN1 over 38 epigenetic targets, including G9a/GLP, and concentration dependently disrupted the interactions of SPIN1 and H3 in cells. Furthermore, 18 was bioavailable in mice. We also developed 19 (MS8535N), which was inactive against SPIN1, as a negative control of 18. Collectively, these compounds are useful chemical tools to study biological functions of SPIN1.


Subject(s)
Lysine , Tudor Domain , Humans , Animals , Mice , Structure-Activity Relationship
2.
Nat Methods ; 21(3): 401-405, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38317008

ABSTRACT

Unique molecular identifiers are random oligonucleotide sequences that remove PCR amplification biases. However, the impact that PCR associated sequencing errors have on the accuracy of generating absolute counts of RNA molecules is underappreciated. We show that PCR errors are a source of inaccuracy in both bulk and single-cell sequencing data, and synthesizing unique molecular identifiers using homotrimeric nucleotide blocks provides an error-correcting solution that allows absolute counting of sequenced molecules.


Subject(s)
High-Throughput Nucleotide Sequencing , Nucleotides , Sequence Analysis, RNA , Oligonucleotides/genetics , Polymerase Chain Reaction
3.
Bioorg Med Chem Lett ; 98: 129546, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37944866

ABSTRACT

Epigenetic proteins containing YEATS domains (YD) are an emerging target class in drug discovery. Described herein are the discovery and characterization efforts associated with PFI-6, a new chemical probe for the YD of MLLT1 (ENL/YEATS1) and MLLT3 (AF9/YEATS3). For hit identification, fragment-like mimetics of endogenous YD ligands (crotonylated histone-containing proteins), were synthesized via parallel medicinal chemistry (PMC) and screened for MLLT1 binding. Subsequent SAR studies led to iterative MLLT1/3 binding and selectivity improvements, culminating in the discovery of PFI-6. PFI-6 demonstrates good affinity and selectivity for MLLT1/3 vs. other human YD proteins (YEATS2/4) and engages MLLT3 in cells. Small-molecule X-ray co-crystal structures of two molecules, including PFI-6, bound to the YD of MLLT1/3 are also described. PFI-6 may be a useful tool molecule to better understand the biological effects associated with modulation of MLLT1/3.


Subject(s)
Histones , Nuclear Proteins , Humans , Nuclear Proteins/metabolism , Histones/metabolism , Protein Domains , Drug Discovery , Neoplasm Proteins/metabolism , Transcription Factors/metabolism
4.
J Med Chem ; 66(1): 460-472, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36562986

ABSTRACT

A series of small-molecule YEATS4 binders have been discovered as part of an ongoing research effort to generate high-quality probe molecules for emerging and/or challenging epigenetic targets. Analogues such as 4d and 4e demonstrate excellent potency and selectivity for YEATS4 binding versus YEATS1,2,3 and exhibit good physical properties and in vitro safety profiles. A new X-ray crystal structure confirms direct binding of this chemical series to YEATS4 at the lysine acetylation recognition site of the YEATS domain. Multiple analogues engage YEATS4 with nanomolar potency in a whole-cell nanoluciferase bioluminescent resonance energy transfer assay. Rodent pharmacokinetic studies demonstrate the competency of several analogues as in vivo-capable binders.


Subject(s)
Gene Expression Regulation , Protein Processing, Post-Translational , Protein Domains , Acetylation , Epigenesis, Genetic
5.
SLAS Discov ; 24(2): 133-141, 2019 02.
Article in English | MEDLINE | ID: mdl-30359161

ABSTRACT

Eleven-nineteen leukemia (ENL) contains an epigenetic reader domain (YEATS domain) that recognizes lysine acylation on histone 3 and facilitates transcription initiation and elongation through its interactions with the super elongation complex (SEC) and the histone methyl transferase DOT1L. Although it has been known for its role as a fusion protein in mixed lineage leukemia (MLL), overexpression of native ENL, and thus dysregulation of downstream genes in acute myeloid leukemia (AML), has recently been implicated as a driver of disease that is reliant on the epigenetic reader activity of the YEATS domain. We developed a peptide displacement assay (histone 3 tail with acylated lysine) and screened a small-molecule library totaling more than 24,000 compounds for their propensity to disrupt the YEATS domain-histone peptide binding. Among these, we identified a first-in-class dual inhibitor of ENL ( Kd = 745 ± 45 nM) and its paralog AF9 ( Kd = 523 ± 53 nM) and performed "SAR by catalog" with the aim of starting the development of a chemical probe for ENL.


Subject(s)
Drug Discovery , Transcriptional Elongation Factors/antagonists & inhibitors , Transcriptional Elongation Factors/chemistry , Biophysical Phenomena , Drug Evaluation, Preclinical , HEK293 Cells , Histones/metabolism , Humans , Inhibitory Concentration 50 , Peptides/metabolism , Protein Domains , Structure-Activity Relationship
6.
Angew Chem Int Ed Engl ; 57(50): 16302-16307, 2018 12 10.
Article in English | MEDLINE | ID: mdl-30288907

ABSTRACT

YEATS domain (YD) containing proteins are an emerging class of epigenetic targets in drug discovery. Dysregulation of these modified lysine-binding proteins has been linked to the onset and progression of cancers. We herein report the discovery and characterisation of the first small-molecule chemical probe, SGC-iMLLT, for the YD of MLLT1 (ENL/YEATS1) and MLLT3 (AF9/YEATS3). SGC-iMLLT is a potent and selective inhibitor of MLLT1/3-histone interactions. Excellent selectivity over other human YD proteins (YEATS2/4) and bromodomains was observed. Furthermore, our probe displays cellular target engagement of MLLT1 and MLLT3. The first small-molecule X-ray co-crystal structures with the MLLT1 YD are also reported. This first-in-class probe molecule can be used to understand MLLT1/3-associated biology and the therapeutic potential of small-molecule YD inhibitors.


Subject(s)
Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/chemistry , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/chemistry , Small Molecule Libraries/chemistry , Transcription Factors/antagonists & inhibitors , Transcription Factors/chemistry , Crystallography, X-Ray , Histones/metabolism , Humans , Molecular Docking Simulation , Neoplasm Proteins/metabolism , Nuclear Proteins/metabolism , Protein Domains , Protein Interaction Maps/drug effects , Small Molecule Libraries/pharmacology , Transcription Factors/metabolism
7.
Article in English | MEDLINE | ID: mdl-28265301

ABSTRACT

BACKGROUND: Histone lysine demethylases (KDMs) are of interest as drug targets due to their regulatory roles in chromatin organization and their tight associations with diseases including cancer and mental disorders. The first KDM inhibitors for KDM1 have entered clinical trials, and efforts are ongoing to develop potent, selective and cell-active 'probe' molecules for this target class. Robust cellular assays to assess the specific engagement of KDM inhibitors in cells as well as their cellular selectivity are a prerequisite for the development of high-quality inhibitors. Here we describe the use of a high-content cellular immunofluorescence assay as a method for demonstrating target engagement in cells. RESULTS: A panel of assays for the Jumonji C subfamily of KDMs was developed to encompass all major branches of the JmjC phylogenetic tree. These assays compare compound activity against wild-type KDM proteins to a catalytically inactive version of the KDM, in which residues involved in the active-site iron coordination are mutated to inactivate the enzyme activity. These mutants are critical for assessing the specific effect of KDM inhibitors and for revealing indirect effects on histone methylation status. The reported assays make use of ectopically expressed demethylases, and we demonstrate their use to profile several recently identified classes of KDM inhibitors and their structurally matched inactive controls. The generated data correlate well with assay results assessing endogenous KDM inhibition and confirm the selectivity observed in biochemical assays with isolated enzymes. We find that both cellular permeability and competition with 2-oxoglutarate affect the translation of biochemical activity to cellular inhibition. CONCLUSIONS: High-content-based immunofluorescence assays have been established for eight KDM members of the 2-oxoglutarate-dependent oxygenases covering all major branches of the JmjC-KDM phylogenetic tree. The usage of both full-length, wild-type and catalytically inactive mutant ectopically expressed protein, as well as structure-matched inactive control compounds, allowed for detection of nonspecific effects causing changes in histone methylation as a result of compound toxicity. The developed assays offer a histone lysine demethylase family-wide tool for assessing KDM inhibitors for cell activity and on-target efficacy. In addition, the presented data may inform further studies to assess the cell-based activity of histone lysine methylation inhibitors.


Subject(s)
Enzyme Inhibitors/metabolism , Histone Demethylases/antagonists & inhibitors , Apoptosis/drug effects , Biocatalysis , Catalytic Domain , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , HeLa Cells , Histone Demethylases/genetics , Histone Demethylases/metabolism , Histones/metabolism , Humans , Inhibitory Concentration 50 , Methylation/drug effects , Microscopy, Fluorescence , Mutagenesis , Paclitaxel/toxicity , Phylogeny , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Stability/drug effects
8.
Oncotarget ; 7(28): 43997-44012, 2016 Jul 12.
Article in English | MEDLINE | ID: mdl-27259267

ABSTRACT

Gastric cancer is one of the most common malignancies and a leading cause of cancer death worldwide. The prognosis of stomach cancer is generally poor as this cancer is not very sensitive to commonly used chemotherapies. Epigenetic modifications play a key role in gastric cancer and contribute to the development and progression of this malignancy. In order to explore new treatment options in this target area we have screened a library of epigenetic inhibitors against gastric cancer cell lines and identified inhibitors for the BET family of bromodomains as potent inhibitors of gastric cancer cell proliferations. Here we show that both the pan-BET inhibitor (+)-JQ1 as well as a newly developed specific isoxazole inhibitor, PNZ5, showed potent inhibition of gastric cancer cell growth. Intriguingly, we found differences in the antiproliferative response between gastric cancer cells tested derived from Brazilian patients as compared to those from Asian patients, the latter being largely resistant to BET inhibition. As BET inhibitors are entering clinical trials these findings provide the first starting point for future therapies targeting gastric cancer.


Subject(s)
Azepines/pharmacology , Cell Proliferation/drug effects , Isoxazoles/pharmacology , Nuclear Proteins/antagonists & inhibitors , Transcription Factors/antagonists & inhibitors , Triazoles/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Asian People , Azepines/chemistry , Brazil , Cell Cycle Proteins , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Profiling , HEK293 Cells , Humans , Isoxazoles/chemistry , Molecular Structure , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Stomach Neoplasms/ethnology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Triazoles/chemistry
9.
Antimicrob Agents Chemother ; 57(12): 5977-86, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24041906

ABSTRACT

The type II topoisomerases DNA gyrase (GyrA/GyrB) and topoisomerase IV (ParC/ParE) are well-validated targets for antibacterial drug discovery. Because of their structural and functional homology, these enzymes are amenable to dual targeting by a single ligand. In this study, two novel benzothiazole ethyl urea-based small molecules, designated compound A and compound B, were evaluated for their biochemical, antibacterial, and pharmacokinetic properties. The two compounds inhibited the ATPase activity of GyrB and ParE with 50% inhibitory concentrations of <0.1 µg/ml. Prevention of DNA supercoiling by DNA gyrase was also observed. Both compounds potently inhibited the growth of a range of bacterial organisms, including staphylococci, streptococci, enterococci, Clostridium difficile, and selected Gram-negative respiratory pathogens. MIC90s against clinical isolates ranged from 0.015 µg/ml for Streptococcus pneumoniae to 0.25 µg/ml for Staphylococcus aureus. No cross-resistance with common drug resistance phenotypes was observed. In addition, no synergistic or antagonistic interactions between compound A or compound B and other antibiotics, including the topoisomerase inhibitors novobiocin and levofloxacin, were detected in checkerboard experiments. The frequencies of spontaneous resistance for S. aureus were <2.3 × 10(-10) with compound A and <5.8 × 10(-11) with compound B at concentrations equivalent to 8× the MICs. These values indicate a multitargeting mechanism of action. The pharmacokinetic properties of both compounds were profiled in rats. Following intravenous administration, compound B showed approximately 3-fold improvement over compound A in terms of both clearance and the area under the concentration-time curve. The measured oral bioavailability of compound B was 47.7%.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Benzothiazoles/pharmacology , DNA Topoisomerase IV/antagonists & inhibitors , DNA Topoisomerases, Type II/metabolism , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Topoisomerase Inhibitors/pharmacology , Urea/analogs & derivatives , Adenosine Triphosphatases/antagonists & inhibitors , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Benzothiazoles/chemistry , Benzothiazoles/pharmacokinetics , Cell Survival/drug effects , DNA Topoisomerase IV/genetics , DNA Topoisomerase IV/metabolism , DNA Topoisomerases, Type II/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Gram-Negative Bacteria/enzymology , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/enzymology , Gram-Positive Bacteria/growth & development , Hep G2 Cells , Humans , Interleukin-33 , Interleukins , Levofloxacin/pharmacology , Male , Microbial Sensitivity Tests , Novobiocin/pharmacology , Rats , Rats, Sprague-Dawley , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Topoisomerase Inhibitors/chemistry , Topoisomerase Inhibitors/pharmacokinetics , Urea/chemistry , Urea/pharmacokinetics , Urea/pharmacology
10.
Prostaglandins Other Lipid Mediat ; 75(1-4): 153-67, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15789622

ABSTRACT

Prostaglandin D2 (PGD2) is a lipid mediator produced by mast cells, macrophages and Th2 lymphocytes and has been detected in high concentrations in the airways of asthmatic patients. There are two receptors for PGD2, namely the D prostanoid (DP) receptor and the chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2). The proinflammatory effects of PGD2 leading to recruitment of eosinophils and Th2 lymphocytes into inflamed tissues is thought to be predominantly due to action on CRTH2. Several PGD2 metabolites have been described as potent and selective agonists for CRTH2. In this study we have characterized the activity of delta12-PGD2, a product of PGD2 isomerization by albumin. Delta12-PGD2 induced calcium mobilization in CHO cells expressing human CRTH2 receptor, with efficacy and potency similar to those of PGD2. These effects were blocked by the TP/CRTH2 antagonist ramatroban. delta12-PGD2 bound to CRTH2 receptor with a pKi of 7.63, and a 55-fold selectivity for CRTH2 compared to DP. In Th2 lymphocytes, delta12-PGD2 induced calcium mobilization with high potency and an efficacy similar to that of PGD2. delta12-PGD2 also caused activation of eosinophils as measured by shape change. Taken together, these results show that delta12-PGD2 is a potent and selective agonist for CRTH2 receptor and can cause activation of eosinophils and Th2 lymphocytes. These data also confirm the selective effect of other PGD2 metabolites on CRTH2 and illustrate how the metabolism of PGD2 may influence the pattern of leukocyte infiltration at sites of allergic inflammation.


Subject(s)
Eosinophils/physiology , Prostaglandin D2/pharmacology , Receptors, Immunologic/agonists , Receptors, Prostaglandin/agonists , Th2 Cells/immunology , Animals , Base Sequence , CHO Cells , Cell Membrane/drug effects , Cell Membrane/physiology , Cell Shape , Cloning, Molecular , Cricetinae , DNA Primers , Eosinophils/cytology , Eosinophils/drug effects , Humans , Kinetics , Molecular Sequence Data , Receptors, Immunologic/drug effects , Receptors, Immunologic/genetics , Receptors, Prostaglandin/drug effects , Receptors, Prostaglandin/genetics , Recombinant Proteins/drug effects , Th2 Cells/drug effects , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...