Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
2.
Malar J ; 12: 284, 2013 Aug 13.
Article in English | MEDLINE | ID: mdl-23941281

ABSTRACT

BACKGROUND: Accurate identification of Plasmodium infections in community surveys is essential to successful malaria control. Microscopy and rapid diagnostic tests (RDTs) are the main techniques used to diagnose malaria in field-based surveys. While microscopy is still considered the gold standard, RDTs are growing in popularity as they allow for rapid and inexpensive diagnosis. Using data from a prevalence survey conducted in north-western Angola in 2010, the authors aimed to compare the performance of microscopy and RDTs in identifying Plasmodium falciparum infections, using polymerase chain reaction (PCR) as the gold standard. METHODS: Results from 3,307 subjects (1,225 preschool-aged children (zero to five year olds), 1,134 school-aged children (six to 15 year olds) and 948 mothers/caregivers (>15 years of age)), tested for P. falciparum infections, were utilized. The sensitivity, specificity, positive, and negative predictive values (PPV and NPV) of microscopy and Paracheck-Pf® were compared using the McNemar's test and the weighted generalized score Chi-squared test for paired data. RESULTS: The prevalence of P. falciparum infections determined by PCR and microscopy was 15.9% and by Paracheck- Pf® was 16.3%. Compared to microscopy, Paracheck-Pf® had significantly higher sensitivity (72.8% versus 60%), specificity (94.3% versus 92.5%), PPV (70.7% versus 60%) and NPV (94.8% versus 92.5%). Both tests had significantly lower sensitivity in mothers (36.8% for microscopy and 43.7% for Paracheck-Pf®) than in their children (68.4% in zero to five years-old and 60.6% in six to 15 years-old for microscopy and 80.4% in zero to five year-olds and 76.5% in six to 15 year-olds for Paracheck-Pf®). CONCLUSION: Both microscopy and RDTs performed suboptimally when compared to PCR. False negativity could be associated with the low parasite density profile of the samples. False positivity may be related to the well-described limitations of those techniques such as level of expertise of microscopists or persistent antigenicity from previous infections in the case of RDTs. Nevertheless, RDTs had enhanced performance comparatively to microscopy in detecting malaria infections, favouring their use in community cross-sectional malaria surveys, where expert performance of microscopy is hard to accomplish.


Subject(s)
Malaria, Falciparum/diagnosis , Microscopy/methods , Polymerase Chain Reaction/methods , Reagent Kits, Diagnostic/parasitology , Adolescent , Angola/epidemiology , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Malaria, Falciparum/epidemiology , Prevalence , Sensitivity and Specificity
3.
Antimicrob Agents Chemother ; 56(10): 5271-7, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22850519

ABSTRACT

Artemisinin-based combination therapy for malaria has become widely available across Africa. Populations of Plasmodium falciparum that were previously dominated by chloroquine (CQ)-resistant genotypes are now under different drug selection pressures. P. malariae, P. ovale curtisi, and P. ovale wallikeri are sympatric with P. falciparum across the continent and are frequently present as coinfections. The prevalence of human Plasmodium species was determined by PCR using DNA from blood spots collected during a cross-sectional survey in northern Angola. P. falciparum was genotyped at resistance-associated loci in pfcrt and pfmdr1 by real-time PCR or by direct sequencing of amplicons. Of the 3,316 samples collected, 541 (16.3%) contained Plasmodium species infections; 477 (88.2%) of these were P. falciparum alone, 6.5% were P. falciparum and P. malariae together, and 1.1% were P. vivax alone. The majority of the remainder (3.7%) harbored P. ovale curtisi or P. ovale wallikeri alone or in combination with other species. Of 430 P. falciparum isolates genotyped for pfcrt, 61.6% carried the wild-type allele CVMNK at codons 72 to 76, either alone or in combination with the resistant allele CVIET. No other pfcrt allele was found. Wild-type alleles dominated at codons 86, 184, 1034, 1042, and 1246 of the pfmdr1 locus among the sequenced isolates. In contrast to previous studies, P. falciparum in the study area comprises an approximately equal mix of genotypes associated with CQ sensitivity and with CQ resistance, suggesting either lower drug pressure due to poor access to treatment in rural areas or a rapid impact of the policy change away from the use of standard monotherapies.


Subject(s)
Plasmodium falciparum/genetics , Plasmodium vivax/genetics , Protozoan Proteins/genetics , Africa , Angola , Antimalarials/therapeutic use , Chloroquine/therapeutic use , Genotype , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Plasmodium falciparum/drug effects , Plasmodium falciparum/pathogenicity , Plasmodium vivax/drug effects , Plasmodium vivax/pathogenicity
4.
PLoS One ; 7(4): e33189, 2012.
Article in English | MEDLINE | ID: mdl-22493664

ABSTRACT

BACKGROUND: Malaria, schistosomiasis and geohelminth infection are linked to maternal and child morbidity and mortality in sub-Saharan Africa. Knowing the prevalence levels of these infections is vital to guide governments towards the implementation of successful and cost-effective disease control initiatives. METHODOLOGY/PRINCIPAL FINDINGS: A cross-sectional study of 1,237 preschool children (0-5 year olds), 1,142 school-aged children (6-15 year olds) and 960 women (>15 year olds) was conducted to understand the distribution of malnutrition, anemia, malaria, schistosomiasis (intestinal and urinary) and geohelminths in a north-western province of Angola. We used a recent demographic surveillance system (DSS) database to select and recruit suitable households. Malnutrition was common among children (23.3% under-weight, 9.9% wasting and 32.2% stunting), and anemia was found to be a severe public health problem (i.e., >40%). Malaria prevalence was highest among preschool children reaching 20.2%. Micro-hematuria prevalence levels reached 10.0% of preschool children, 16.6% of school-aged children and 21.7% of mothers. Geohelminth infections were common, affecting 22.3% of preschool children, 31.6% of school-aged children and 28.0% of mothers. CONCLUSIONS: Here we report prevalence levels of malaria, schistosomiasis and geohelminths; all endemic in this poorly described area where a DSS has been recently established. Furthermore we found evidence that the studied infections are associated with the observed levels of anemia and malnutrition, which can justify the implementation of integrated interventions for the control of these diseases and morbidities.


Subject(s)
Anemia/epidemiology , Hookworm Infections/epidemiology , Malaria, Falciparum/epidemiology , Malnutrition/epidemiology , Population Surveillance , Schistosomiasis/epidemiology , Adolescent , Adult , Angola/epidemiology , Animals , Child , Child, Preschool , Comorbidity , Cross-Sectional Studies , Feces/parasitology , Female , Hookworm Infections/parasitology , Humans , Infant , Malaria, Falciparum/parasitology , Male , Prevalence , Schistosomiasis/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...