Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Biomed Eng ; 6(2): 157-167, 2022 02.
Article in English | MEDLINE | ID: mdl-35190679

ABSTRACT

Systemically delivered lipid nanoparticles are preferentially taken up by hepatocytes. This hinders the development of effective, non-viral means of editing genes in tissues other than the liver. Here we show that lipid-nanoparticle-mediated gene editing in the lung and spleen of adult mice can be enhanced by reducing Cas9-mediated insertions and deletions in hepatocytes via oligonucleotides disrupting the secondary structure of single-guide RNAs (sgRNAs) and also via their combination with short interfering RNA (siRNA) targeting Cas9 messenger RNA (mRNA). In SpCas9 mice with acute lung inflammation, the systemic delivery of an oligonucleotide inhibiting an sgRNA targeting the intercellular adhesion molecule 2 (ICAM-2), followed by the delivery of the sgRNA, reduced the fraction of ICAM-2 indels in hepatocytes and increased that in lung endothelial cells. In wild-type mice, the lipid-nanoparticle-mediated delivery of an inhibitory oligonucleotide, followed by the delivery of Cas9-degrading siRNA and then by Cas9 mRNA and sgRNA, reduced the fraction of ICAM-2 indels in hepatocytes but not in splenic endothelial cells. Inhibitory oligonucleotides and siRNAs could be used to modulate the cell-type specificity of Cas9 therapies.


Subject(s)
Gene Editing , Nanoparticles , Animals , Antigens, CD , CRISPR-Cas Systems , Cell Adhesion Molecules/genetics , Endothelial Cells , Lipids/chemistry , Liposomes , Liver , Lung , Mice , Nanoparticles/chemistry , Spleen
2.
Sci Adv ; 8(8): eabm7950, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35196075

ABSTRACT

Simultaneous delivery of mRNA to multiple populations of antigen (Ag)-specific CD8+ T cells is challenging given the diversity of peptide epitopes and polymorphism of class I major histocompatibility complexes (MHCI). We developed Ag-presenting nanoparticles (APNs) for mRNA delivery using pMHCI molecules that were refolded with photocleavable peptides to allow rapid ligand exchange by UV light and site-specifically conjugated with a lipid tail for postinsertion into preformed mRNA lipid nanoparticles. Across different TCR transgenic mouse models (P14, OT-1, and Pmel), UV-exchanged APNs bound and transfected their cognate Ag-specific CD8+ T cells equivalent to APNs produced using conventionally refolded pMHCI molecules. In mice infected with PR8 influenza, multiplexed delivery of UV-exchanged APNs against three immunodominant epitopes led to ~50% transfection of a VHH mRNA reporter in cognate Ag-specific CD8+ T cells. Our data show that UV-mediated peptide exchange can be used to rapidly produce APNs for mRNA delivery to multiple populations of Ag-specific T cells in vivo.

3.
Nat Rev Cancer ; 21(10): 655-668, 2021 10.
Article in English | MEDLINE | ID: mdl-34489588

ABSTRACT

Detection of cancer at an early stage when it is still localized improves patient response to medical interventions for most cancer types. The success of screening tools such as cervical cytology to reduce mortality has spurred significant interest in new methods for early detection (for example, using non-invasive blood-based or biofluid-based biomarkers). Yet biomarkers shed from early lesions are limited by fundamental biological and mass transport barriers - such as short circulation times and blood dilution - that limit early detection. To address this issue, synthetic biomarkers are being developed. These represent an emerging class of diagnostics that deploy bioengineered sensors inside the body to query early-stage tumours and amplify disease signals to levels that could potentially exceed those of shed biomarkers. These strategies leverage design principles and advances from chemistry, synthetic biology and cell engineering. In this Review, we discuss the rationale for development of biofluid-based synthetic biomarkers. We examine how these strategies harness dysregulated features of tumours to amplify detection signals, use tumour-selective activation to increase specificity and leverage natural processing of bodily fluids (for example, blood, urine and proximal fluids) for easy detection. Finally, we highlight the challenges that exist for preclinical development and clinical translation of synthetic biomarker diagnostics.


Subject(s)
Biomarkers, Tumor/analysis , Early Detection of Cancer/methods , Neoplasms/diagnosis , Biomarkers, Tumor/blood , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/urine , Humans , Neoplasms/blood , Neoplasms/metabolism , Neoplasms/urine
4.
Nat Biomed Eng ; 5(11): 1348-1359, 2021 11.
Article in English | MEDLINE | ID: mdl-34385695

ABSTRACT

Treating solid malignancies with chimeric antigen receptor (CAR) T cells typically results in poor responses. Immunomodulatory biologics delivered systemically can augment the cells' activity, but off-target toxicity narrows the therapeutic window. Here we show that the activity of intratumoural CAR T cells can be controlled photothermally via synthetic gene switches that trigger the expression of transgenes in response to mild temperature elevations (to 40-42 °C). In vitro, heating engineered primary human T cells for 15-30 min led to over 60-fold-higher expression of a reporter transgene without affecting the cells' proliferation, migration and cytotoxicity. In mice, CAR T cells photothermally heated via gold nanorods produced a transgene only within the tumours. In mouse models of adoptive transfer, the systemic delivery of CAR T cells followed by intratumoural production, under photothermal control, of an interleukin-15 superagonist or a bispecific T cell engager bearing an NKG2D receptor redirecting T cells against NKG2D ligands enhanced antitumour activity and mitigated antigen escape. Localized photothermal control of the activity of engineered T cells may enhance their safety and efficacy.


Subject(s)
Receptors, Chimeric Antigen , Animals , Antigenic Drift and Shift , Cell Line, Tumor , Immunologic Factors , Immunotherapy, Adoptive , Mice , Receptors, Chimeric Antigen/genetics , T-Lymphocytes
5.
Theranostics ; 10(8): 3652-3667, 2020.
Article in English | MEDLINE | ID: mdl-32206114

ABSTRACT

Cell-based immunotherapies, such as T cells engineered with chimeric antigen receptors (CARs), have the potential to cure patients of disease otherwise refractory to conventional treatments. Early-on-treatment and long-term durability of patient responses depend critically on the ability to control the potency of adoptively transferred T cells, as overactivation can lead to complications like cytokine release syndrome, and immunosuppression can result in ineffective responses to therapy. Drugs or biologics (e.g., cytokines) that modulate immune activity are limited by mass transport barriers that reduce the local effective drug concentration, and lack site or target cell specificity that results in toxicity. Emerging technologies that enable site-targeted, remote control of key T cell functions - including proliferation, antigen-sensing, and target-cell killing - have the potential to increase treatment precision and safety profile. These technologies are broadly applicable to other immune cells to expand immune cell therapies across many cancers and diseases. In this review, we highlight the opportunities, challenges and the current state-of-the-art for remote control of synthetic immunity.


Subject(s)
Cytokines/therapeutic use , Immunotherapy, Adoptive/methods , Neoplasms/therapy , Receptors, Chimeric Antigen/therapeutic use , Humans , Synthetic Biology
6.
Proc Natl Acad Sci U S A ; 117(11): 5655-5663, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32123100

ABSTRACT

Epithelial tissues mechanically deform the surrounding extracellular matrix during embryonic development, wound repair, and tumor invasion. Ex vivo measurements of such multicellular tractions within three-dimensional (3D) biomaterials could elucidate collective dissemination during disease progression and enable preclinical testing of targeted antimigration therapies. However, past 3D traction measurements have been low throughput due to the challenges of imaging and analyzing information-rich 3D material deformations. Here, we demonstrate a method to profile multicellular clusters in a 96-well-plate format based on spatially heterogeneous contractile, protrusive, and circumferential tractions. As a case study, we profile multicellular clusters across varying states of the epithelial-mesenchymal transition, revealing a successive loss of protrusive and circumferential tractions, as well as the formation of localized contractile tractions with elongated cluster morphologies. These cluster phenotypes were biochemically perturbed by using drugs, biasing toward traction signatures of different epithelial or mesenchymal states. This higher-throughput analysis is promising to systematically interrogate and perturb aberrant mechanobiology, which could be utilized with human-patient samples to guide personalized therapies.


Subject(s)
Cell Movement , Drug Screening Assays, Antitumor/methods , Epithelial Cells/physiology , Epithelial-Mesenchymal Transition , Tissue Scaffolds/chemistry , Biomechanical Phenomena , Cell Line , Collagen/chemistry , Fibroins/chemistry , Humans , Hydrogels/chemistry , Phenotype , Precision Medicine/methods , Primary Cell Culture/methods , Spheroids, Cellular/physiology
7.
ACS Chem Biol ; 15(2): 533-542, 2020 02 21.
Article in English | MEDLINE | ID: mdl-31904924

ABSTRACT

CRISPR-associated proteins (Cas) are enabling powerful new approaches to control mammalian cell functions, yet the lack of spatially defined, noninvasive modalities limits their use as biological tools. Here, we integrate thermal gene switches with dCas9 complexes to confer remote control of gene activation and suppression with short pulses of heat. Using a thermal switch constructed from the heat shock protein A6 (HSPA6) locus, we show that a single heat pulse 3-5 °C above basal temperature is sufficient to trigger expression of dCas9 complexes. We demonstrate that dCas9 fused to the transcriptional activator VP64 is functional after heat activation, and, depending on the number of heat pulses, drives transcription of endogenous genes GzmB and CCL21 to levels equivalent to that achieved by a constitutive viral promoter. Across a range of input temperatures, we find that downstream protein expression of GzmB closely correlates with transcript levels (R2 = 0.99). Using dCas9 fused with the transcriptional suppressor KRAB, we show that longitudinal suppression of the reporter d2GFP depends on key thermal input parameters including pulse magnitude, number of pulses, and dose fractionation. In living mice, we extend our study using photothermal heating to spatially target implanted cells to suppress d2GFP in vivo. Our study establishes a noninvasive and targeted approach to harness Cas-based proteins for modulation of gene expression to complement current methods for remote control of cell function.


Subject(s)
CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems , Heating , Transcriptional Activation/physiology , Animals , Chemokine CCL21/metabolism , Genes, Switch , Granzymes/metabolism , Green Fluorescent Proteins/metabolism , HEK293 Cells , HSP70 Heat-Shock Proteins/genetics , Herpes Simplex Virus Protein Vmw65/genetics , Humans , Kruppel-Like Transcription Factors/genetics , Mice, Nude , Protein Domains , Recombinant Fusion Proteins/genetics , Repressor Proteins/genetics , Simplexvirus/chemistry , Transcription, Genetic/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...