Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2209950, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37001880

ABSTRACT

Integrating photovoltaic devices onto the surface of carbon-fiber-reinforced polymer substrates should create materials with high mechanical strength that are also able to generate electrical power. Such devices are anticipated to find ready applications as structural, energy-harvesting systems in both the automotive and aeronautical sectors. Here, the fabrication of triple-cation perovskite n-i-p solar cells onto the surface of planarized carbon-fiber-reinforced polymer substrates is demonstrated, with devices utilizing a transparent top ITO contact. These devices also contain a "wrinkled" SiO2 interlayer placed between the device and substrate that alleviates thermally induced cracking of the bottom ITO layer. Devices are found to have a maximum stabilized power conversion efficiency of 14.5% and a specific power (power per weight) of 21.4 W g-1 (without encapsulation), making them highly suitable for mobile power applications.

2.
ACS Appl Mater Interfaces ; 14(33): 37587-37594, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35920712

ABSTRACT

Spray coating is an industrially mature technique used to deposit thin films that combines high throughput with the ability to coat nonplanar surfaces. Here, we explore the use of ultrasonic spray coating to fabricate perovskite solar cells (PSCs) over rigid, nonplanar surfaces without problems caused by solution dewetting and subsequent "run-off". Encouragingly, we find that PSCs can be spray-coated using our processes onto glass substrates held at angles of inclination up to 45° away from the horizontal, with such devices having comparable power conversion efficiencies (up to 18.3%) to those spray-cast onto horizontal substrates. Having established that our process can be used to create PSCs on surfaces that are not horizontal, we fabricate devices over a convex glass substrate, with devices having a maximum power conversion efficiency of 12.5%. To our best knowledge, this study represents the first demonstration of a rigid, curved perovskite solar cell. The integration of perovskite photovoltaics onto curved surfaces will likely find direct applications in the aerospace and automotive sectors.

3.
Adv Sci (Weinh) ; 9(14): e2104848, 2022 May.
Article in English | MEDLINE | ID: mdl-35142096

ABSTRACT

Self-assembled monolayers (SAMs) are becoming widely utilized as hole-selective layers in high-performance p-i-n architecture perovskite solar cells. Ultrasonic spray coating and airbrush coating are demonstrated here as effective methods to deposit MeO-2PACz; a carbazole-based SAM. Potential dewetting of hybrid perovskite precursor solutions from this layer is overcome using optimized solvent rinsing protocols. The use of air-knife gas-quenching is then explored to rapidly remove the volatile solvent from an MAPbI3 precursor film spray-coated onto an MeO-2PACz SAM, allowing fabrication of p-i-n devices with power conversion efficiencies in excess of 20%, with all other layers thermally evaporated. This combination of deposition techniques is consistent with a rapid, roll-to-roll manufacturing process for the fabrication of large-area solar cells.

4.
ACS Appl Energy Mater ; 3(6): 5552-5562, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32596647

ABSTRACT

The development of scalable deposition methods for perovskite solar cell materials is critical to enable the commercialization of this nascent technology. Herein, we investigate the use and processing of nanoparticle SnO2 films as electron transport layers in perovskite solar cells and develop deposition methods for ultrasonic spray coating and slot-die coating, leading to photovoltaic device efficiencies over 19%. The effects of postprocessing treatments (thermal annealing, UV ozone, and O2 plasma) are then probed using structural and spectroscopic techniques to characterize the nature of the np-SnO2/perovskite interface. We show that a brief "hot air flow" method can be used to replace extended thermal annealing, confirming that this approach is compatible with high-throughput processing. Our results highlight the importance of interface management to minimize nonradiative losses and provide a deeper understanding of the processing requirements for large-area deposition of nanoparticle metal oxides.

5.
RSC Adv ; 10(66): 40341-40350, 2020 Nov 02.
Article in English | MEDLINE | ID: mdl-35520836

ABSTRACT

The addition of alkali metal halides to hybrid perovskite materials can significantly impact their crystallisation and hence their performance when used in solar cell devices. Previous work on the use of potassium iodide (KI) in active layers to passivate defects in triple-cation mixed-halide perovskites has been shown to enhance their luminescence efficiency and reduce current-voltage hysteresis. However, the operational stability of KI passivated perovskite solar cells under ambient conditions remains largely unexplored. By investigating perovskite solar cell performance with SnO2 or TiO2 electron transport layers (ETL), we propose that defect passivation using KI is highly sensitive to the composition of the perovskite-ETL interface. We reconfirm findings from previous reports that KI preferentially interacts with bromide ions in mixed-halide perovskites, and - at concentrations >5 mol% in the precursor solution - modifies the primary absorber composition as well as leading to the phase segregation of an undesirable secondary non-perovskite phase (KBr) at high KI concentration. Importantly, by studying both material and device stability under continuous illumination and bias under ambient/high-humidity conditions, we show that this secondary phase becomes a favourable degradation product, and that devices incorporating KI have reduced stability.

6.
ACS Appl Mater Interfaces ; 10(46): 39428-39434, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30411607

ABSTRACT

We use ultrasonic spray-coating to fabricate cesium-containing triple-cation perovskite solar cells with a power-conversion efficiency of up to 17.8%. Our fabrication route involves a brief exposure of the partially wet spray-cast films to a low vacuum, a process that is used to control film crystallization. We show that films that are not vacuum-exposed are relatively rough and inhomogeneous, while vacuum-exposed films are smooth and consist of small and densely packed perovskite crystals. The process techniques developed here represent a step toward a scalable and industrially compatible manufacturing process capable of creating stable and high-performance perovskite solar cells.

7.
ACS Appl Mater Interfaces ; 8(3): 2232-7, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26726763

ABSTRACT

Wide-bandgap perovskite solar cells (PSCs) based on organolead (I, Br)-mixed halide perovskites (e.g., MAPbI2Br and MAPbIBr2 perovskite with bandgaps of 1.77 and 2.05 eV, respectively) are considered as promising low-cost alternatives for application in tandem or multijunction photovoltaics (PVs). Here, we demonstrate that manipulating the crystallization behavior of (I, Br)-mixed halide perovskites in antisolvent bath is critical for the formation of smooth, dense thin films of these perovskites. Since the growth of perovskite grains from a precursor solution tends to be more rapid with increasing Br content, further enhancement in the nucleation rate becomes necessary for the effective decoupling of the nucleation and the crystal-growth stages in Br-rich perovskites. This is enabled by introducing simple stirring during antisolvent-bathing, which induces enhanced advection transport of the extracted precursor-solvent into the bath environment. Consequently, wide-bandgap planar PSCs fabricated using these high quality mixed-halide perovskite thin films, Br-rich MAPbIBr2, in particular, show enhanced PV performance.

8.
Nanoscale ; 8(12): 6265-70, 2016 Mar 28.
Article in English | MEDLINE | ID: mdl-26549434

ABSTRACT

The microstructure of the solid-PbI2 precursor thin film plays an important role in the intercalation crystallization of the formamidinium lead triiodide perovskite (α-HC(NH2)2PbI3). It is shown that microstructurally engineered PbI2 thin films with porosity and low crystallinity are the most favorable for conversion into uniform-coverage, phase-pure α-HC(NH2)2PbI3 perovskite thin films. Planar perovskite solar cells fabricated using these thin films deliver power conversion efficiency (PCE) up to 13.8%.

9.
J Phys Chem Lett ; 6(23): 4827-39, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26560696

ABSTRACT

The use of organometal trihalide perovskites (OTPs) in perovskite solar cells (PSCs) is revolutionizing the field of photovoltaics, which is being led by advances in solution processing of OTP thin films. First, we look at fundamental phenomena pertaining to nucleation/growth, coarsening, and microstructural evolution involved in the solution-processing of OTP thin films for PSCs from a materials-science perspective. Established scientific principles that govern some of these phenomena are invoked in the context of specific literature examples of solution-processed OTP thin films. Second, the nature and the unique characteristics of OTP thin-film microstructures themselves are discussed from a materials-science perspective. Finally, we discuss the challenges and opportunities in the characterization of OTP thin films for not only gaining a deep understanding of defects and microstructures but also elucidating classical and nonclassical phenomena pertaining to nucleation/growth, coarsening, and microstructural evolution in these films. The overall goal is to have deterministic control over the solution-processing of tailored OTP thin films with desired morphologies and microstructures.

SELECTION OF CITATIONS
SEARCH DETAIL
...