Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
PLoS One ; 15(4): e0226858, 2020.
Article in English | MEDLINE | ID: mdl-32267859

ABSTRACT

High-power microwaves are used to inhibit electronics of threatening military or civilian vehicles. This work aims to assess health hazards of high-power microwaves and helps to define hazard threshold levels of modulated radiofrequency exposures such as those emitted by the first generations of mobile phones. Rats were exposed to the highest possible field levels, under single acute or repetitive exposures for eight weeks. Intense microwave electric fields at 1 MV m-1 of nanoseconds duration were applied from two sources at different carrier frequencies of 10 and 3.7 GHz. The repetition rate was 100 pps, and the duration of train pulses lasted from 10 s to twice 8 min. The effects on the central nervous system were evaluated, by labelling brain inflammation marker GFAP and by performing different behavioural tests: rotarod, T-maze, beam-walking, open-field, and avoidance test. Long-time survival was measured in animals repeatedly exposed, and anatomopathological analysis was performed on animals sacrificed at two years of life or earlier in case of precocious death. Control groups were sham exposed. Few effects were observed on behaviour. With acute exposure, an avoidance reflex was shown at very high thermal level (22 W kg-1); GFAP was increased some days after exposure. Most importantly, with repeated exposures, survival time was 4-months shorter in the exposed group, with eleven animals exhibiting a large sub-cutaneous tumour, compared to two in the sham group. A residual X-ray exposure was also present in the beam (0.8 Gy), which is probably not a bias for the observed result. High power microwaves below thermal level in average, can increase cancer prevalence and decrease survival time in rats, without clear effects on behaviour. The parameters of this effect need to be further explored, and a more precise dosimetry to be performed.


Subject(s)
Carcinogenesis/radiation effects , Microwaves/adverse effects , Neoplasms, Experimental/epidemiology , Animals , Avoidance Learning/radiation effects , Behavior, Animal/radiation effects , Cell Phone , Incidence , Male , Neoplasms, Experimental/etiology , Radiometry , Rats , Rats, Sprague-Dawley , Survival Analysis , Time Factors
2.
J Alzheimers Dis ; 73(2): 467-476, 2020.
Article in English | MEDLINE | ID: mdl-31796670

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is the most common type of neurodegenerative disease leading to dementia. Several studies suggested that mobile phone radiofrequency electromagnetic field (RF-EMF) exposures modified AD memory deficits in rodent models. OBJECTIVE: Here we aimed to test the hypothesis that RF-EMF exposure may modify memory through corticosterone and oxidative stress in the Samaritan rat model of AD. METHODS: Long-Evans male rats received intracerebroventricular infusion with ferrous sulphate, amyloid-beta 1-42 peptide, and buthionine-sufloximine (AD rats) or with vehicle (control rats). To mimic cell phone use, RF-EMF were exposed to the head for 1 month (5 days/week, in restraint). To look for hazard thresholds, high brain averaged specific absorption rates (BASAR) were tested: 1.5 W/Kg (15 min), 6 W/Kg (15 min), and 6 W/Kg (45 min). The sham group was in restraint for 45 min. Endpoints were spatial memory in the radial maze, plasmatic corticosterone, heme oxygenase-1 (HO1), and amyloid plaques. RESULTS: Results indicated similar corticosterone levels but impaired memory performances and increased cerebral staining of thioflavine and of HO1 in the sham AD rats compared to the controls. A correlative increase of cortical HO1 staining was the only effect of RF-EMF in control rats. In AD rats, RF-EMF exposures induced a correlative increase of hippocampal HO1 staining and reduced corticosterone. DISCUSSION: According to our data, neither AD nor control rats showed modified memory after RF-EMF exposures. Unlike control rats, AD rats showed higher hippocampal oxidative stress and reduced corticosterone with the higher BASAR. This data suggests more fragility related to neurodegenerative disease toward RF-EMF exposures.


Subject(s)
Alzheimer Disease/metabolism , Cell Phone , Corticosterone/metabolism , Oxidative Stress/radiation effects , Radio Waves , Alzheimer Disease/chemically induced , Animals , Electromagnetic Fields , Heme Oxygenase (Decyclizing)/metabolism , Maze Learning , Memory Disorders/psychology , Plaque, Amyloid/pathology , Rats , Rats, Long-Evans , Spatial Memory
3.
Environ Sci Pollut Res Int ; 25(11): 10894-10903, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29397508

ABSTRACT

Exposure of pregnant women to radiofrequency (RF) devices raises questions on their possible health consequences for their progeny. We examined the hazard threshold of gestational RF on the progeny's glial homeostasis, sensory-motor gating, emotionality, and novelty seeking and tested whether maternal immune activation would increase RF toxicity. Pregnant dams were daily restrained with loop antennas adjoining the abdomen (fetus body specific absorption rates (SAR): 0, 0.7, or 2.6 W/kg) and received three lipopolysaccharide (LPS) intra-peritoneal injections (0 or 80 µg/kg). Scores in the prepulse startle inhibition, fear conditioning, open field, and elevated plus maze were assessed at adolescence and adulthood. Glial fibrillary acidic protein (GFAP) and interleukines-1ß (ILs) were quantified. LPS induced a SAR-dependent reduction of the prepulse startle inhibition in adults. Activity in the open field was reduced at 2.6 W/kg at adolescence. GFAP and ILs, emotional memory, and anxiety-related behaviors were not modified. These data support the hypothesis that maternal immune activation increased the developmental RF exposure-induced long-term neurobiological impairments. These data support the fact that fetuses who receive combined environmental exposures with RF need special attention for protection.


Subject(s)
Cell Phone , Maternal Exposure/adverse effects , Prenatal Exposure Delayed Effects/epidemiology , Radiation Exposure/adverse effects , Radio Waves/adverse effects , Animals , Cerebrum/radiation effects , Conditioning, Psychological/radiation effects , Exploratory Behavior/radiation effects , Female , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Maze Learning/radiation effects , Mice , Pregnancy , Prenatal Exposure Delayed Effects/etiology , Rats, Sprague-Dawley , Reflex, Startle/radiation effects
4.
Bioelectromagnetics ; 37(5): 338-50, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27272062

ABSTRACT

The widespread use of mobile phones by adolescents raises concerns about possible health effects of radiofrequency electromagnetic fields (RF EMF 900 MHz) on the immature brain. Neuro-development is a period of particular sensitivity to repeated environmental challenges such as pro-inflammatory insults. Here, we used rats to assess whether astrocyte reactivity, perception, and emotionality were affected by RF EMF exposures during adolescence. We also investigated if adolescent brains were more sensitive to RF EMF exposures after neurodevelopmental inflammation. To do so, we either performed 80 µg/kg intra-peritoneal injections of lipopolysaccharides during gestation or 1.25 µg/h intra-cerebro-ventricular infusions during adolescence. From postnatal day (P)32 to 62, rats were subjected to 45 min RF EMF exposures to the brain (specific absorption rates: 0, 1.5, or 6 W/kg, 5 days/week). From P56, they were tested for perception of novelty, anxiety-like behaviors, and emotional memory. To assess astrocytic reactivity, Glial Fibrillary Acidic Protein was measured at P64. Our results did not show any neurobiological impairment in healthy and vulnerable RF EMF-exposed rats compared to their sham-exposed controls. These data did not support the hypothesis of a specific cerebral sensitivity to RF EMF of adolescents, even after a neurodevelopmental inflammation. Bioelectromagnetics. 37:338-350, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Astrocytes/radiation effects , Brain/physiopathology , Brain/radiation effects , Prenatal Exposure Delayed Effects/pathology , Prenatal Exposure Delayed Effects/physiopathology , Radio Waves/adverse effects , Adolescent , Animals , Anxiety/etiology , Astrocytes/cytology , Astrocytes/drug effects , Astrocytes/pathology , Behavior, Animal/drug effects , Behavior, Animal/radiation effects , Brain/drug effects , Brain/physiology , Disease Models, Animal , Emotions/drug effects , Emotions/radiation effects , Female , Humans , Lipopolysaccharides/pharmacology , Male , Pregnancy , Prenatal Exposure Delayed Effects/psychology , Rats
5.
Biogerontology ; 17(5-6): 841-857, 2016 11.
Article in English | MEDLINE | ID: mdl-27241674

ABSTRACT

The increasing use of mobile phones by aging people raises issues about the effects of radiofrequency electromagnetic fields (RF-EMF) on the aging central nervous system. Here, we tested if mobile phone RF-EMF exposures could exacerbate senescence-typical neurobiological deficits. Thus, aged (22-24 months) and young (4-6 months) adult male rats were subjected to head RF-EMF exposures (900 MHz, specific absorption rate (SAR) of 6 W/kg, 45 min/day for 1 month in restraint rockets). To assess senescence-typical neurobiological deficits, spatial memory, emotional memory, anxiety-related behavior, locomotor activity, interleukins (IL)-1ß and 6, glial fibrillary acidic protein and corticosterone were measured. Aged rats presented deficits in spatial learning, exploration, anxiety-related behaviors, and increased hippocampal ILs and cortical IL-1ß. Results showed that senescence-typical neurobiological deficits were not modified by RF-EMF exposures. RF-EMF-exposed rats (young and aged adults pooled) had decreased anxiety-related behaviors in the elevated plus maze. This study which is the first to assess RF-EMF exposures during late aging did not support the hypothesis of a specific cerebral vulnerability to RF-EMF during senescence. More investigations using longer RF-EMF exposures should be performed to conclude regarding the inoffensiveness of RF-EMF exposures.


Subject(s)
Aging/radiation effects , Brain/physiopathology , Brain/radiation effects , Cognition Disorders/physiopathology , Memory Disorders/etiology , Memory Disorders/physiopathology , Radiation Exposure/adverse effects , Absorption, Radiation , Animals , Cognition Disorders/etiology , Male , Memory/radiation effects , Radiation Dosage , Rats , Rats, Wistar
6.
Bioelectromagnetics ; 37(3): 175-182, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26969907

ABSTRACT

Individuals who suffer from idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) complain of a variety of adverse health effects. Troubled sleep remains a recurrent and common symptom in IEI-EMF individuals. Melatonin, a circadian hormone, plays a major role in the sleep process. In this study, we compared levels of melatonin between a sensitive group (IEI-EMF, n = 30) and a non-sensitive control group (non IEI-EMF, n = 25) without exposure to electromagnetic sources. Three questionnaires were used to evaluate the subjective quality and sleep quantity: the Epworth Sleepiness Scale, the Pittsburgh Sleep Quality Index and the Spiegel Sleep Inventory. Melatonin was quantified in saliva and its major metabolite 6-sulfatoxymelatonin (aMT6s) in urine. Melatonin levels were compared by a two-way analysis of variance at various times between the control and IEI-EMF group. Despite significantly different sleep scores between the two groups, with a lower score in the IEI-EMF group (P < 0.001), no statistical difference was found between the two groups for saliva melatonin (P > 0.05) and urine aMT6s (P > 0.05). Bioelectromagnetics. 37:175-182, 2016. © 2016 Wiley Periodicals, Inc.

7.
PLoS One ; 10(4): e0123297, 2015.
Article in English | MEDLINE | ID: mdl-25875304

ABSTRACT

Nanoparticle surface chemistry is known to play a crucial role in interactions with cells and their related cytotoxic effects. As inhalation is a major route of exposure to nanoparticles, we studied specific uptake and damages of well-characterized fluorescent 50 nm polystyrene (PS) nanobeads harboring different functionalized surfaces (non-functionalized, carboxylated and aminated) on pulmonary epithelial cells and macrophages (Calu-3 and THP-1 cell lines respectively). Cytotoxicity of in mass dye-labeled functionalized PS nanobeads was assessed by xCELLigence system and alamarBlue viability assay. Nanobeads-cells interactions were studied by video-microscopy, flow cytometry and also confocal microscopy. Finally ROS generation was assessed by glutathione depletion dosages and genotoxicity was assessed by γ-H2Ax foci detection, which is considered as the most sensitive technique for studying DNA double strand breaks. The uptake kinetic was different for each cell line. All nanobeads were partly adsorbed and internalized, then released by Calu-3 cells, while THP-1 macrophages quickly incorporated all nanobeads which were located in the cytoplasm rather than in the nuclei. In parallel, the genotoxicity study reported that only aminated nanobeads significantly increased DNA damages in association with a strong depletion of reduced glutathione in both cell lines. We showed that for similar nanoparticle concentrations and sizes, aminated polystyrene nanobeads were more cytotoxic and genotoxic than unmodified and carboxylated ones on both cell lines. Interestingly, aminated polystyrene nanobeads induced similar cytotoxic and genotoxic effects on Calu-3 epithelial cells and THP-1 macrophages, for all levels of intracellular nanoparticles tested. Our results strongly support the primordial role of nanoparticles surface chemistry on cellular uptake and related biological effects. Moreover our data clearly show that nanoparticle internalization and observed adverse effects are not necessarily associated.


Subject(s)
DNA Breaks, Double-Stranded/drug effects , Epithelial Cells/drug effects , Macrophages/drug effects , Nanoparticles/toxicity , Polystyrenes/pharmacology , Amination , Cell Line , Cell Survival/drug effects , DNA Damage , Epithelial Cells/cytology , Epithelial Cells/metabolism , Glutathione/metabolism , Histones/genetics , Histones/metabolism , Humans , Macrophages/cytology , Macrophages/metabolism , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Oxazines , Particle Size , Polystyrenes/chemistry , Reactive Oxygen Species/agonists , Reactive Oxygen Species/metabolism , Surface Properties , Xanthenes
8.
Toxicol Rep ; 1: 157-171, 2014.
Article in English | MEDLINE | ID: mdl-28962236

ABSTRACT

As the lung is one of the main routes of exposure to manufactured nanoparticles, we developed an in vitro model resembling the alveolo-capillary barrier for the study of nanoparticle translocation. In order to provide a relevant and ethical in vitro model, cost effective and easy-to-implement human cell lines were used. Pulmonary epithelial cells (Calu-3 cell line) and macrophages (THP-1 differentiated cells) were cultivated on the apical side and pulmonary endothelial cells (HPMEC-ST1.6R cell line) on the basal side of a microporous polyester membrane (Transwell®). Translocation of non-functionalized (51 and 110 nm) and aminated (52 nm) fluorescent polystyrene (PS) nanobeads was studied in this system. The use of Calu-3 cells allowed high transepithelial electrical resistance (TEER) values (>1000 Ω cm2) in co-cultures with or without macrophages. After 24 h of exposure to non-cytotoxic concentrations of non-functionalized PS nanobeads, the relative TEER values (%/t0) were significantly decreased in co-cultures. Epithelial cells and macrophages were able to internalize PS nanobeads. Regarding translocation, Transwell® membranes per se limit the passage of nanoparticles between apical and basal side. However, small non-functionalized PS nanobeads (51 nm) were able to translocate as they were detected in the basal side of co-cultures. Altogether, these results show that this co-culture model present good barrier properties allowing the study of nanoparticle translocation but research effort need to be done to improve the neutrality of the porous membrane delimitating apical and basal sides of the model.

9.
Nanotoxicology ; 7(8): 1302-14, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23020093

ABSTRACT

Macrophages and alveolar epithelial cells are the first targets of inhaled nanoparticles (NPs) reaching the alveoli. Mono- or co-cultures of lung epithelial (A549 or NCI-H441) and macrophage (THP-1) cell lines were used to study the cell cooperation and the involvement of the P2X7 cell death receptor during the inflammation caused by SiO2 and TiO2 NPs. Here we show that, secretion of pro-inflammatory cytokines (IL-1ß, IL-6 and IL-8) in response to NPs exposure was higher in co-cultures than in mono-cultures. A functional P2X7 receptor was found in all the cell lines studied. Its involvement in IL-1ß secretion in co-cultures was demonstrated using a specific antagonist, the brilliant blue G. Furthermore, mono and co-cultures exhibited distinct secretion patterns of pro-inflammatory cytokines in response to NPs exposure, and we provide the first evidence that the P2X7 receptor is involved in the inflammation triggered by SiO2 and TiO2 NPs, by increasing IL-1ß secretion, and likely through the inflammasome pathway. Altogether, our data indicate that cell co-cultures used in this study represent valid models to study the inflammatory mechanisms of NPs within the alveoli.


Subject(s)
Epithelial Cells/metabolism , Macrophages/metabolism , Metal Nanoparticles/toxicity , Receptors, Purinergic P2X7/metabolism , Cell Line , Cell Survival/drug effects , Coculture Techniques , Epithelial Cells/drug effects , Humans , Inflammasomes , Inflammation , Interleukins/analysis , Interleukins/metabolism , Macrophages/drug effects , Metal Nanoparticles/chemistry , Titanium/chemistry , Titanium/pharmacokinetics , Titanium/toxicity
10.
Int J Radiat Biol ; 86(5): 367-75, 2010 May.
Article in English | MEDLINE | ID: mdl-20397841

ABSTRACT

PURPOSE: The rapid development and expansion of mobile communications contributes to the general debate on the effects of electromagnetic fields emitted by mobile phones on the nervous system. This study aims at measuring the glial fibrillary acidic protein (GFAP) expression in 48 rat brains to evaluate reactive astrocytosis, three and 10 days after long-term head-only sub-chronic exposure to a 900 MHz electromagnetic field (EMF) signal, in male rats. METHODS: Sprague-Dawley rats were exposed for 45 min/day at a brain-averaged specific absorption rate (SAR) = 1.5 W/kg or 15 min/day at a SAR = 6 W/kg for five days per week during an eight-week period. GFAP expression was measured by the immunocytochemistry method in the following rat brain areas: Prefrontal cortex, cerebellar cortex, dentate gyrus of the hippocampus, lateral globus pallidus of the striatum, and the caudate putamen. RESULTS: Compared to the sham-treated rats, those exposed to the sub-chronic GSM (Global System for mobile communications) signal at 1.5 or 6 W/kg showed an increase in GFAP levels in the different brain areas, three and ten days after treatment. CONCLUSION: Our results show that sub-chronic exposures to a 900 MHz EMF signal for two months could adversely affect rat brain (sign of a potential gliosis).


Subject(s)
Brain/radiation effects , Cell Phone , Electromagnetic Fields/adverse effects , Gene Expression Regulation/radiation effects , Glial Fibrillary Acidic Protein/metabolism , Radio Waves/adverse effects , Animals , Brain/anatomy & histology , Brain/metabolism , Brain/pathology , Caudate Nucleus/radiation effects , Dentate Gyrus/radiation effects , Environmental Exposure/adverse effects , Gliosis/metabolism , Gliosis/pathology , Globus Pallidus/radiation effects , Hippocampus/radiation effects , Immunohistochemistry , Male , Putamen/radiation effects , Rats , Rats, Sprague-Dawley , Time Factors
11.
Part Fibre Toxicol ; 5: 20, 2008 Dec 09.
Article in English | MEDLINE | ID: mdl-19068117

ABSTRACT

BACKGROUND: Constituted only by carbon atoms, CNT are hydrophobic and hardly detectable in biological tissues. These properties make biokinetics and toxicology studies more complex. METHODS: We propose here a method to investigate the biopersistence of CNT in organism, based on detection of nickel, a metal present in the MWCNT we investigated. RESULTS AND CONCLUSION: Our results in rats that received MWCNT by intratracheal instillation, reveal that MWCNT can be eliminated and do not significantly cross the pulmonary barrier but are still present in lungs 6 months after a unique instillation. MWCNT structure was also showed to be chemically modified and cleaved in the lung. These results provide the first data of CNT biopersistence and clearance at 6 months after respiratory administration.

12.
Biomed Pharmacother ; 62(4): 273-81, 2008.
Article in English | MEDLINE | ID: mdl-18424058

ABSTRACT

Extension of the mobile phone technology raises concern about the health effects of 900 MHz microwaves on the central nervous system (CNS). In this study we measured GFAP expression using immunocytochemistry method, to evaluate glial evolution 10 days after a chronic exposure (5 days a week for 24 weeks) to GSM signal for 45 min/day at a brain-averaged specific absorption rate (SAR)=1.5 W/kg and for 15 min/day at a SAR=6 W/kg in the following rat brain areas: prefrontal cortex (PfCx), caudate putamen (Cpu), lateral globus pallidus of striatum (LGP), dentate gyrus of hippocampus (DG) and cerebellum cortex (CCx). In comparison to sham or cage control animals, rats exposed to chronic GSM signal at 6 W/kg have increased GFAP stained surface areas in the brain (p<0.05). But the chronic exposure to GSM at 1.5 W/kg did not increase GFAP expression. Our results indicated that chronic exposure to GSM 900 MHz microwaves (SAR=6 W/kg) may induce persistent astroglia activation in the rat brain (sign of a potential gliosis).


Subject(s)
Brain/radiation effects , Microwaves/adverse effects , Neuroglia/radiation effects , Animals , Cell Phone , Glial Fibrillary Acidic Protein/analysis , Immunohistochemistry , Male , Neuroglia/chemistry , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...