Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Pathol Inform ; 13: 100126, 2022.
Article in English | MEDLINE | ID: mdl-36268069

ABSTRACT

Identifying organs within histology images is a fundamental and non-trivial step in toxicological digital pathology workflows as multiple organs often appear on the same whole slide image (WSI). Previous works in automated tissue classification have investigated the use of single magnifications, and demonstrated limitations when attempting to identify small and contiguous organs at low magnifications. In order to overcome these shortcomings, we present a multi-magnification convolutional neural network (CNN), called MMO-Net, which employs context and cellular detail from different magnifications to facilitate the recognition of complex organs. Across N=320 WSI from 3 contract research organization (CRO) laboratories, we demonstrate state-of-the-art organ detection and segmentation performance of 7 rat organs with and without lesions: liver, kidney, thyroid gland, parathyroid gland, urinary bladder, salivary gland, and mandibular lymph node (AUROC=0.99-1.0 for all organs, Dice≥0.9 except parathyroid (0.73)). Evaluation takes place at both inter- and intra CRO levels, suggesting strong generalizability performance. Results are qualitatively reviewed using visualization masks to ensure separation of organs in close proximity (e.g., thyroid vs parathyroid glands). MMO-Net thus offers organ localization that serves as a potential quality control tool to validate WSI metadata and as a preprocessing step for subsequent organ-specific artificial intelligence (AI) use cases. To facilitate research in this area, all associated WSI and metadata used for this study are being made freely available, forming a first of its kind dataset for public use.

2.
Ther Adv Gastrointest Endosc ; 14: 2631774521990623, 2021.
Article in English | MEDLINE | ID: mdl-33718871

ABSTRACT

INTRODUCTION: The Mayo Clinic Endoscopic Subscore is a commonly used grading system to assess the severity of ulcerative colitis. Correctly grading colonoscopies using the Mayo Clinic Endoscopic Subscore is a challenging task, with suboptimal rates of interrater and intrarater variability observed even among experienced and sufficiently trained experts. In recent years, several machine learning algorithms have been proposed in an effort to improve the standardization and reproducibility of Mayo Clinic Endoscopic Subscore grading. METHODS: Here we propose an end-to-end fully automated system based on deep learning to predict a binary version of the Mayo Clinic Endoscopic Subscore directly from raw colonoscopy videos. Differently from previous studies, the proposed method mimics the assessment done in practice by a gastroenterologist, that is, traversing the whole colonoscopy video, identifying visually informative regions and computing an overall Mayo Clinic Endoscopic Subscore. The proposed deep learning-based system has been trained and deployed on raw colonoscopies using Mayo Clinic Endoscopic Subscore ground truth provided only at the colon section level, without manually selecting frames driving the severity scoring of ulcerative colitis. RESULTS AND CONCLUSION: Our evaluation on 1672 endoscopic videos obtained from a multisite data set obtained from the etrolizumab Phase II Eucalyptus and Phase III Hickory and Laurel clinical trials, show that our proposed methodology can grade endoscopic videos with a high degree of accuracy and robustness (Area Under the Receiver Operating Characteristic Curve = 0.84 for Mayo Clinic Endoscopic Subscore ⩾ 1, 0.85 for Mayo Clinic Endoscopic Subscore ⩾ 2 and 0.85 for Mayo Clinic Endoscopic Subscore ⩾ 3) and reduced amounts of manual annotation. PLAIN LANGUAGE SUMMARY: Patient, caregiver and provider thoughts on educational materials about prescribing and medication safety Artificial intelligence can be used to automatically assess full endoscopic videos and estimate the severity of ulcerative colitis. In this work, we present an artificial intelligence algorithm for the automatic grading of ulcerative colitis in full endoscopic videos. Our artificial intelligence models were trained and evaluated on a large and diverse set of colonoscopy videos obtained from concluded clinical trials. We demonstrate not only that artificial intelligence is able to accurately grade full endoscopic videos, but also that using diverse data sets obtained from multiple sites is critical to train robust AI models that could potentially be deployed on real-world data.

3.
Sensors (Basel) ; 17(6)2017 Jun 14.
Article in English | MEDLINE | ID: mdl-28613251

ABSTRACT

A critical concern of autonomous vehicles is safety. Different approaches have tried to enhance driving safety to reduce the number of fatal crashes and severe injuries. As an example, Intelligent Speed Adaptation (ISA) systems warn the driver when the vehicle exceeds the recommended speed limit. However, these systems only take into account fixed speed limits without considering factors like road geometry. In this paper, we consider road curvature with speed limits to automatically adjust vehicle's speed with the ideal one through our proposed Dynamic Speed Adaptation (DSA) method. Furthermore, 'curve analysis extraction' and 'speed limits database creation' are also part of our contribution. An algorithm that analyzes GPS information off-line identifies high curvature segments and estimates the speed for each curve. The speed limit database contains information about the different speed limit zones for each traveled path. Our DSA senses speed limits and curves of the road using GPS information and ensures smooth speed transitions between current and ideal speeds. Through experimental simulations with different control algorithms on real and simulated datasets, we prove that our method is able to significantly reduce lateral errors on sharp curves, to respect speed limits and consequently increase safety and comfort for the passenger.

SELECTION OF CITATIONS
SEARCH DETAIL
...