Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 107(6-1): 064134, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37464676

ABSTRACT

The standard Lipkin-Meshkov-Glick (LMG) model undergoes a second-order ground-state quantum phase transition (QPT) and an excited-state quantum phase transition (ESQPT). The inclusion of an anharmonic term in the LMG Hamiltonian gives rise to a second ESQPT that alters the static properties of the model [Gamito et al., Phys. Rev. E 106, 044125 (2022)2470-004510.1103/PhysRevE.106.044125]. In the present work, the dynamical implications associated to this new ESQPT are analyzed. For that purpose, a quantum quench protocol is defined on the system Hamiltonian that takes an initial state, usually the ground state, into a complex excited state that evolves on time. The impact of the new ESQPT on the time evolution of the survival probability and the local density of states after the quantum quench, as well as on the Loschmidt echoes and the microcanonical out-of-time-order correlator (OTOC) are discussed. The anharmonity-induced ESQPT, despite having a different physical origin, has dynamical consequences similar to those observed in the ESQPT already present in the standard LMG model.

2.
Phys Rev E ; 106(4-1): 044125, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36397542

ABSTRACT

The basic Lipkin-Meshkov-Glick model displays a second-order ground-state quantum phase transition and an excited-state quantum phase transition (ESQPT). The inclusion of an anharmonic term in the Hamiltonian implies a second ESQPT of a different nature. We characterize this ESQPT using the mean field limit of the model. The alternative ESQPT, associated with the changes in the boundary of the finite Hilbert space of the system, can be properly described using the order parameter of the ground-state quantum phase transition, the energy gap between adjacent states, the participation ratio, and the quantum fidelity susceptibility.

SELECTION OF CITATIONS
SEARCH DETAIL
...