Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Sleep ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38877879

ABSTRACT

To isolate melanopsin contributions to retinal sensitivity measured by the post-illumination pupil response (PIPR), controlling for individual differences in non-melanopsin contributions including retinal irradiance is required. When methodologies to negate such differences present barriers, statistical controls have included age, baseline diameter, iris pigmentation, and circadian time of testing. Alternatively, the pupil light reflex (PLR) and calculations estimating retinal irradiance both reflect retinal irradiance, while the PLR also reflects downstream pathways. We reanalyzed data from an observational, correlational study comparing the PIPR across seasons in seasonal affective disorder (SAD) and controls. The PIPR was measured in 47 adults in Pittsburgh, Pennsylvania (25 SAD) over 50 s after 1 s red and blue stimuli of 15.3 log photons/cm2/s. The PLR was within 1 s while PIPR was averaged over 10-40 seconds post-stimulus. Two raters ranked iris pigmentation using a published scale. We evaluated model fit using Akaike's Information Criterion (AIC) across different covariate sets. The best fitting models included either estimated retinal irradiance or PLR, and circadian time of testing. The PLR is collected contemporaneously in PIPR studies and is an individually specific measure of nonspecific effects, while being minimally burdensome. This work extends the prior publication by introducing theoretically grounded covariates that improved analytic model fits based on AIC specific to the present methods and sample. Such quantitative methods could be helpful in studies which must balance participant and researcher burden against tighter methodological controls of individual differences in retinal irradiance.

2.
Res Sq ; 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38045237

ABSTRACT

Background: Behavioral, social, and physical characteristics are posited to distinguish the sexes, yet research on transcription-level sexual differences in the brain is limited. Here, we investigated sexually divergent brain transcriptomics in prepubertal cynomolgus macaques, a commonly used surrogate species to humans. Methods: A transcriptomic profile using RNA sequencing was generated for the temporal lobe, ventral midbrain, and cerebellum of 3 female and 3 male cynomolgus macaques previously treated with an Adeno-associated virus vector mix. Statistical analyses to determine differentially expressed protein-coding genes in all three lobes were conducted using DeSeq2 with a false discovery rate corrected P value of .05. Results: We identified target genes in the temporal lobe, ventral midbrain, and cerebellum with functions in translation, immunity, behavior, and neurological disorders that exhibited statistically significant sexually divergent expression. Conclusions: We provide potential mechanistic insights to the epidemiological differences observed between the sexes with regards to mental health and infectious diseases, such as COVID19. Our results provide pre-pubertal information on sexual differences in non-human primate brain transcriptomics and may provide insight to health disparities between the biological sexes in humans.

3.
Mol Ther ; 31(12): 3441-3456, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37814449

ABSTRACT

Adeno-associated virus (AAV) continues to be the gold standard vector for therapeutic gene delivery and has proven especially useful for treating ocular disease. Intravitreal injection (IVtI) is a promising delivery route because it increases accessibility of gene therapies to larger patient populations. However, data from clinical and non-human primate (NHP) studies utilizing currently available capsids indicate that anatomical barriers to AAV and pre-existing neutralizing antibodies can restrict gene expression to levels that are "sub-therapeutic" in a substantial proportion of patients. Here, we performed a combination of directed evolution in NHPs of an AAV2-based capsid library with simultaneous mutations across six surface-exposed variable regions and rational design to identify novel capsid variants with improved retinal transduction following IVtI. Following two rounds of screening in NHP, enriched variants were characterized in intravitreally injected mice and NHPs and shown to have increased transduction relative to AAV2. Lead capsid variant, P2-V1, demonstrated an increased ability to evade neutralizing antibodies in human vitreous samples relative to AAV2 and AAV2.7m8. Taken together, this study further contributed to our understanding of the selective pressures associated with retinal transduction via the vitreous and identified promising novel AAV capsid variants for clinical consideration.


Subject(s)
Antibodies, Neutralizing , Capsid , Humans , Mice , Animals , Dependovirus , Intravitreal Injections , Transduction, Genetic , Primates/genetics , Capsid Proteins/genetics , Capsid Proteins/metabolism , Genetic Vectors/genetics
4.
Science ; 379(6630): 376-381, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36701440

ABSTRACT

Light regulates physiology, mood, and behavior through signals sent to the brain by intrinsically photosensitive retinal ganglion cells (ipRGCs). How primate ipRGCs sense light is unclear, as they are rare and challenging to target for electrophysiological recording. We developed a method of acute identification within the live, ex vivo retina. Using it, we found that ipRGCs of the macaque monkey are highly specialized to encode irradiance (the overall intensity of illumination) by blurring spatial, temporal, and chromatic features of the visual scene. We describe mechanisms at the molecular, cellular, and population scales that support irradiance encoding across orders-of-magnitude changes in light intensity. These mechanisms are conserved quantitatively across the ~70 million years of evolution that separate macaques from mice.


Subject(s)
Biological Evolution , Lighting , Retinal Ganglion Cells , Animals , Mice , Light , Retinal Ganglion Cells/physiology , Macaca
5.
Front Immunol ; 13: 895519, 2022.
Article in English | MEDLINE | ID: mdl-35784369

ABSTRACT

The cellular events that dictate the initiation of the complement pathway in ocular degeneration, such as age-related macular degeneration (AMD), is poorly understood. Using gene expression analysis (single cell and bulk), mass spectrometry, and immunohistochemistry, we dissected the role of multiple retinal and choroidal cell types in determining the complement homeostasis. Our scRNA-seq data show that the cellular response to early AMD is more robust in the choroid, particularly in fibroblasts, pericytes and endothelial cells. In late AMD, complement changes were more prominent in the retina especially with the expression of the classical pathway initiators. Notably, we found a spatial preference for these differences. Overall, this study provides insights into the heterogeneity of cellular responses for complement expression and the cooperation of neighboring cells to complete the pathway in healthy and AMD eyes. Further, our findings provide new cellular targets for therapies directed at complement.


Subject(s)
Endothelial Cells , Macular Degeneration , Choroid , Complement System Proteins , Humans , Macular Degeneration/genetics , Retina
6.
Nat Commun ; 13(1): 2862, 2022 05 23.
Article in English | MEDLINE | ID: mdl-35606344

ABSTRACT

From mouse to primate, there is a striking discontinuity in our current understanding of the neural coding of motion direction. In non-primate mammals, directionally selective cell types and circuits are a signature feature of the retina, situated at the earliest stage of the visual process. In primates, by contrast, direction selectivity is a hallmark of motion processing areas in visual cortex, but has not been found in the retina, despite significant effort. Here we combined functional recordings of light-evoked responses and connectomic reconstruction to identify diverse direction-selective cell types in the macaque monkey retina with distinctive physiological properties and synaptic motifs. This circuitry includes an ON-OFF ganglion cell type, a spiking, ON-OFF polyaxonal amacrine cell and the starburst amacrine cell, all of which show direction selectivity. Moreover, we discovered that macaque starburst cells possess a strong, non-GABAergic, antagonistic surround mediated by input from excitatory bipolar cells that is critical for the generation of radial motion sensitivity in these cells. Our findings open a door to investigation of a precortical circuitry that computes motion direction in the primate visual system.


Subject(s)
Connectome , Macaca , Retina , Amacrine Cells/physiology , Animals , Evoked Potentials, Visual/physiology , Macaca/physiology , Mammals , Mice , Primates/physiology , Retina/physiology , Retinal Ganglion Cells/physiology , Synapses/physiology
7.
Invest Ophthalmol Vis Sci ; 63(1): 35, 2022 01 03.
Article in English | MEDLINE | ID: mdl-35084433

ABSTRACT

Purpose: Under real-world conditions, saccades are often accompanied by changes in vergence angle and lens accommodation that compensate for changes in the distance between the current fixation point and the next target. As the superior colliculus directs saccades, we examined whether it contains premotor neurons that might control lens compensation for target distance. Methods: Rabies virus or recombinant rabies virus was injected into the ciliary bodies of Macaca fascicularis monkeys to label circuits controlling lens accommodation via retrograde transsynaptic transport. In addition, conventional anterograde tracers were used to confirm the rabies findings with respect to projections to preganglionic Edinger-Westphal motoneurons. Results: At time courses that rabies virus labeled lens-related premotor neurons in the supraoculomotor area and central mesencephalic reticular formation, labeled neurons were not found within the superior colliculus. They were, however, found bilaterally in the medial pretectal nucleus continuing caudally into the tectal longitudinal column, which lies on the midline, between the colliculi. A bilateral projection by this area to the preganglionic Edinger-Westphal nucleus was confirmed by anterograde tracing. Only at longer time courses were cells labeled in the superior colliculus. Conclusions: The superior colliculus does not provide premotor input to preganglionic Edinger-Westphal nucleus motoneurons, but may provide input to lens-related premotor populations in the supraoculomotor area and central mesencephalic reticular formation. There is, however, a novel third population of lens-related premotor neurons in the tectal longitudinal column and rostrally adjacent medial pretectal nucleus. The specific function of this premotor population remains to be determined.


Subject(s)
Accommodation, Ocular/physiology , Edinger-Westphal Nucleus/physiology , Animals , Female , Macaca fascicularis , Male , Models, Animal , Motor Neurons/physiology , Neural Pathways
8.
Mol Ther ; 29(9): 2806-2820, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34298128

ABSTRACT

Non-human primates (NHPs) are a preferred animal model for optimizing adeno-associated virus (AAV)-mediated CNS gene delivery protocols before clinical trials. In spite of its inherent appeal, it is challenging to compare different serotypes, delivery routes, and disease indications in a well-powered, comprehensive, multigroup NHP experiment. Here, a multiplex barcode recombinant AAV (rAAV) vector-tracing strategy has been applied to a systemic analysis of 29 distinct, wild-type (WT), AAV natural isolates and engineered capsids in the CNS of eight macaques. The report describes distribution of each capsid in 15 areas of the macaques' CNS after intraparenchymal (putamen) injection, or cerebrospinal fluid (CSF)-mediated administration routes (intracisternal, intrathecal, or intracerebroventricular). To trace the vector biodistribution (viral DNA) and targeted tissues transduction (viral mRNA) of each capsid in each of the analyzed CNS areas, quantitative next-generation sequencing analysis, assisted by the digital-droplet PCR technology, was used. The report describes the most efficient AAV capsid variants targeting specific CNS areas after each route of administration using the direct side-by-side comparison of WT AAV isolates and a new generation of rationally designed capsids. The newly developed bioinformatics and visualization algorithms, applicable to the comparative analysis of several mammalian brain models, have been developed and made available in the public domain.


Subject(s)
Capsid Proteins/genetics , Central Nervous System/chemistry , Dependovirus/physiology , Genetic Vectors/administration & dosage , Algorithms , Animals , Central Nervous System/virology , DNA, Viral/genetics , Databases, Genetic , Dependovirus/genetics , Drug Administration Routes , High-Throughput Nucleotide Sequencing , Primates , RNA, Messenger/genetics , RNA, Viral/genetics , Tissue Distribution , Transduction, Genetic
9.
J Affect Disord ; 291: 93-101, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34029883

ABSTRACT

A retinal subsensitivity to environmental light may trigger Seasonal Affective Disorder (SAD) under low wintertime light conditions. The main aim of this study was to assess the responses of melanopsin-containing retinal ganglion cells in participants (N= 65) diagnosed with unipolar SAD compared to controls with no history of depression. Participants attended a summer visit, a winter visit, or both. Retinal responses to light were measured using the post-illumination pupil response (PIPR) to assess melanopsin-driven responses in the non-visual light input pathway. Linear mixed-effects modeling was used to test a group*season interaction on the Net PIPR (red minus blue light response, percent baseline). We observed a significant group*season interaction such that the PIPR decreased from summer to winter significantly in the SAD group while not in the control group. The SAD group PIPR was significantly lower in winter compared to controls but did not differ between groups in summer. Only 60% of the participants underwent an eye health exam, although all participants reported no history of retinal pathology, and eye exam status was neither associated with outcome nor different between groups. This seasonal variation in melanopsin driven non-visual responses to light may be a risk factor for SAD, and further highlights individual differences in responses to light for direct or indirect effects of light on mood.


Subject(s)
Pupil , Seasonal Affective Disorder , Humans , Rod Opsins , Seasons
10.
Vis Neurosci ; 38: E007, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33977889

ABSTRACT

Since most gaze shifts are to targets that lie at a different distance from the viewer than the current target, gaze changes commonly require a change in the angle between the eyes. As part of this response, lens curvature must also be adjusted with respect to target distance by the ciliary muscle. It has been suggested that projections by the cerebellar fastigial and posterior interposed nuclei to the supraoculomotor area (SOA), which lies immediately dorsal to the oculomotor nucleus and contains near response neurons, support this behavior. However, the SOA also contains motoneurons that supply multiply innervated muscle fibers (MIFs) and the dendrites of levator palpebrae superioris motoneurons. To better determine the targets of the fastigial nucleus in the SOA, we placed an anterograde tracer into this cerebellar nucleus in Macaca fascicularis monkeys and a retrograde tracer into their contralateral medial rectus, superior rectus, and levator palpebrae muscles. We only observed close associations between anterogradely labeled boutons and the dendrites of medial rectus MIF and levator palpebrae motoneurons. However, relatively few of these associations were present, suggesting these are not the main cerebellar targets. In contrast, labeled boutons in SOA, and in the adjacent central mesencephalic reticular formation (cMRF), densely innervated a subpopulation of neurons. Based on their location, these cells may represent premotor near response neurons that supply medial rectus and preganglionic Edinger-Westphal motoneurons. We also identified lens accommodation-related cerebellar afferent neurons via retrograde trans-synaptic transport of the N2c rabies virus from the ciliary muscle. They were found bilaterally in the fastigial and posterior interposed nuclei, in a distribution which mirrored that of neurons retrogradely labeled from the SOA and cMRF. Our results suggest these cerebellar neurons coordinate elements of the near response during symmetric vergence and disjunctive saccades by targeting cMRF and SOA premotor neurons.


Subject(s)
Motor Neurons , Oculomotor Muscles , Animals , Macaca fascicularis , Tegmentum Mesencephali
11.
Proc Natl Acad Sci U S A ; 117(46): 29123-29132, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33139553

ABSTRACT

During normal viewing, we direct our eyes between objects in three-dimensional (3D) space many times a minute. To accurately fixate these objects, which are usually located in different directions and at different distances, we must generate eye movements with appropriate versional and vergence components. These combined saccade-vergence eye movements result in disjunctive saccades with a vergence component that is much faster than that generated during smooth, symmetric vergence eye movements. The neural control of disjunctive saccades is still poorly understood. Recent anatomical studies suggested that the central mesencephalic reticular formation (cMRF), located lateral to the oculomotor nucleus, contains premotor neurons potentially involved in the neural control of these eye movements. We have therefore investigated the role of the cMRF in the control of disjunctive saccades in trained rhesus monkeys. Here, we describe a unique population of cMRF neurons that, during disjunctive saccades, display a burst of spikes that are highly correlated with vergence velocity. Importantly, these neurons show no increase in activity for either conjugate saccades or symmetric vergence. These neurons are termed saccade-vergence burst neurons (SVBNs) to maintain consistency with modeling studies that proposed that such a class of neuron exists to generate the enhanced vergence velocities observed during disjunctive saccades. Our results demonstrate the existence and characteristics of SVBNs whose activity is correlated solely with the vergence component of disjunctive saccades and, based on modeling studies, are critically involved in the generation of the disjunctive saccades required to view objects in our 3D world.


Subject(s)
Eye Movements/physiology , Neurons/physiology , Saccades/physiology , Vision, Binocular/physiology , Animals , Macaca mulatta , Male , Midbrain Reticular Formation/pathology , Vision, Ocular
12.
Invest Ophthalmol Vis Sci ; 61(8): 5, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32634204

ABSTRACT

Purpose: In frontal-eyed mammals such as primates, eye movements are coordinated so that the lines of sight are directed at targets in a manner that adjusts for target distance. The lens of each eye must also be adjusted with respect to target distance to maintain precise focus. Whether the systems for controlling eye movements are monocularly or binocularly organized is currently a point of contention. We recently determined that the premotor neurons controlling the lens of one eye are bilaterally distributed in the midbrain. In this study, we examine whether this is due to premotor neurons projecting bilaterally to the preganglionic Edinger-Westphal nuclei, or by a mixture of ipsilaterally and contralaterally projecting cells supplying each nucleus. Methods: The ciliary muscles of Macaca fasicularis monkeys were injected with recombinant forms of the N2c rabies virus, one eye with virus that produced a green fluorescent marker and the other eye with a virus that produced a red fluorescent marker. Results: Preganglionic motoneurons in the Edinger-Westphal nucleus displayed the same marker as the ipsilateral injected muscle. Many of the premotor neurons in the supraoculomotor area and central mesencephalic reticular formation were doubly labeled. Others were labeled from either the ipsilateral or contralateral eye. Conclusions: These results suggest that both monocular control and binocular control of lens accommodation are present. Binocular inputs yoke the accommodation in the two eyes. Monocular inputs may allow modification related to differences in each eye's target distance or differences in the capacities of the two ciliary muscles.


Subject(s)
Accommodation, Ocular/physiology , Edinger-Westphal Nucleus/physiology , Eye Movements/physiology , Animals , Female , Macaca fascicularis , Models, Animal , Motor Neurons/physiology , Neural Pathways
14.
Mol Ther ; 28(2): 411-421, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31813800

ABSTRACT

Global gene delivery to the CNS has therapeutic importance for the treatment of neurological disorders that affect the entire CNS. Due to direct contact with the CNS, cerebrospinal fluid (CSF) is an attractive route for CNS gene delivery. A safe and effective route to achieve global gene distribution in the CNS is needed, and administration of genes through the cisterna magna (CM) via a suboccipital puncture results in broad distribution in the brain and spinal cord. However, translation of this technique to clinical practice is challenging due to the risk of serious and potentially fatal complications in patients. Herein, we report development of a gene therapy delivery method to the CM through adaptation of an intravascular microcatheter, which can be safely navigated intrathecally under fluoroscopic guidance. We examined the safety, reproducibility, and distribution/transduction of this method in sheep using a self-complementary adeno-associated virus 9 (scAAV9)-GFP vector. This technique was used to treat two Tay-Sachs disease patients (30 months old and 7 months old) with AAV gene therapy. No adverse effects were observed during infusion or post-treatment. This delivery technique is a safe and minimally invasive alternative to direct infusion into the CM, achieving broad distribution of AAV gene transfer to the CNS.


Subject(s)
Cisterna Magna/metabolism , Dependovirus/genetics , Gene Expression , Gene Transfer Techniques , Genetic Vectors/genetics , Transduction, Genetic , Animals , Catheters , Central Nervous System/metabolism , Genes, Reporter , Genetic Therapy , Genetic Vectors/administration & dosage , Humans , Injections, Spinal , Magnetic Resonance Imaging , Models, Animal , Sheep , Surgery, Computer-Assisted , Tomography, X-Ray Computed , Transgenes , Video Recording
15.
Front Neurol ; 10: 129, 2019.
Article in English | MEDLINE | ID: mdl-30853933

ABSTRACT

The number of research groups studying the pupil is increasing, as is the number of publications. Consequently, new standards in pupillography are needed to formalize the methodology including recording conditions, stimulus characteristics, as well as suitable parameters of evaluation. Since the description of intrinsically photosensitive retinal ganglion cells (ipRGCs) there has been an increased interest and broader application of pupillography in ophthalmology as well as other fields including psychology and chronobiology. Color pupillography plays an important role not only in research but also in clinical observational and therapy studies like gene therapy of hereditary retinal degenerations and psychopathology. Stimuli can vary in size, brightness, duration, and wavelength. Stimulus paradigms determine whether rhodopsin-driven rod responses, opsin-driven cone responses, or melanopsin-driven ipRGC responses are primarily elicited. Background illumination, adaptation state, and instruction for the participants will furthermore influence the results. This standard recommends a minimum set of variables to be used for pupillography and specified in the publication methodologies. Initiated at the 32nd International Pupil Colloquium 2017 in Morges, Switzerland, the aim of this manuscript is to outline standards in pupillography based on current knowledge and experience of pupil experts in order to achieve greater comparability of pupillographic studies. Such standards will particularly facilitate the proper application of pupillography by researchers new to the field. First we describe general standards, followed by specific suggestions concerning the demands of different targets of pupil research: the afferent and efferent reflex arc, pharmacology, psychology, sleepiness-related research and animal studies.

16.
J Neurophysiol ; 121(5): 1692-1703, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30840529

ABSTRACT

To view a nearby target, the three components of the near response are brought into play: 1) the eyes are converged through contraction of the medial rectus muscles to direct both foveae at the target, 2) the ciliary muscle contracts to allow the lens to thicken, increasing its refractive power to focus the near target on the retina, and 3) the pupil constricts to increase depth of field. In this study, we utilized retrograde transsynaptic transport of the N2c strain of rabies virus injected into the ciliary body of one eye of macaque monkeys to identify premotor neurons that control lens accommodation. We previously used this approach to label a premotor population located in the supraoculomotor area. In the present report, we describe a set of neurons located bilaterally in the central mesencephalic reticular formation that are labeled in the same time frame as the supraoculomotor area population, indicating their premotor character. The labeled premotor neurons are mostly multipolar cells, with long, very sparsely branched dendrites. They form a band that stretches across the core of the midbrain reticular formation. This population appears to be continuous with the premotor near-response neurons located in the supraoculomotor area at the level of the caudal central subdivision of the oculomotor nucleus. The central mesencephalic reticular formation has previously been associated with horizontal saccadic eye movements, so these premotor cells might be involved in controlling lens accommodation during disjunctive saccades. Alternatively, they may represent a population that controls vergence velocity. NEW & NOTEWORTHY This report uses transsynaptic transport of rabies virus to provide new evidence that the central mesencephalic reticular formation (cMRF) contains premotor neurons controlling lens accommodation. When combined with other recent reports that the cMRF also contains premotor neurons supplying medial rectus motoneurons, these results indicate that this portion of the reticular formation plays an important role in directing the near response and disjunctive saccades when viewers look between targets located at different distances.


Subject(s)
Accommodation, Ocular , Reticular Formation/cytology , Animals , Dendrites/physiology , Efferent Pathways/cytology , Efferent Pathways/physiology , Macaca fascicularis , Motor Neurons/cytology , Motor Neurons/physiology , Neuroanatomical Tract-Tracing Techniques/methods , Reticular Formation/physiology
17.
Methods Mol Biol ; 1950: 249-262, 2019.
Article in English | MEDLINE | ID: mdl-30783978

ABSTRACT

Adeno-associated virus (AAV) has emerged as the vector of choice for delivering genes to the retina. Indeed, the first gene therapy to receive FDA approval in the United States is an AAV-based treatment for the inherited retinal disease, Leber congenital amaurosis-2. Voretigene neparvovec (Luxturna™) is delivered to patients via subretinal (SR) injection, an invasive surgical procedure that requires detachment of photoreceptors (PRs) from the retinal pigment epithelium (RPE). It has been reported that subretinal administration of vector under the cone-exclusive fovea leads to a loss of central retinal structure and visual acuity in some patients. Due to its technical difficulty and potential risks, alternatives to SR injection have been explored in primates. Intravitreally (Ivt) delivered AAV transduces inner retina and foveal cones, but with low efficiency. Novel AAV capsid variants identified via rational design or directed evolution have offered only incremental improvements, and have failed to promote pan-inner retinal transduction or significant outer retinal transduction beyond the fovea. Problems with retinal transduction by Ivt-delivered AAV include dilution in the vitreous, potential antibody-mediated neutralization of capsid in this nonimmune privileged space, and the presence of the inner limiting membrane (ILM), a basement membrane separating the vitreous from the neural retina. We have developed an alternative "subILM" injection method that overcomes all three hurdles. Specifically, vector is placed in a surgically induced, hydrodissected space between the ILM and neural retina. We have shown that subILM injection promotes more efficient retinal transduction by AAV than Ivt injection, and results in uniform and extensive transduction of retinal ganglion cells (RGCs) beneath the subILM bleb. We have also demonstrated transduction of Muller glia, ON bipolar cells, and photoreceptors by subILM injection. Our results confirm that the ILM is a major barrier to transduction by AAV in primate retina and that, when it is circumvented, the efficiency and depth to which AAV2 promotes transduction of multiple retinal cell classes is greatly enhanced. Here we describe in detail methods for vector preparation, vector dilution, and subILM injection as performed in macaque (Macaca sp.).


Subject(s)
Dependovirus/genetics , Gene Transfer Techniques , Genetic Vectors/genetics , Retina/metabolism , Transduction, Genetic , Animals , Gene Expression , Genes, Reporter , Injections , Macaca , Microscopy, Fluorescence , Retinal Ganglion Cells/metabolism , Transgenes
18.
Hum Gene Ther ; 30(5): 571-589, 2019 05.
Article in English | MEDLINE | ID: mdl-30358434

ABSTRACT

Mutations in GUCY2D, the gene encoding retinal guanylate cyclase-1 (retGC1), are the leading cause of autosomal dominant cone-rod dystrophy (CORD6). Significant progress toward clinical application of gene replacement therapy for Leber congenital amaurosis (LCA) due to recessive mutations in GUCY2D (LCA1) has been made, but a different approach is needed to treat CORD6 where gain of function mutations cause dysfunction and dystrophy. The CRISPR/Cas9 gene editing system efficiently disrupts genes at desired loci, enabling complete gene knockout or homology directed repair. Here, adeno-associated virus (AAV)-delivered CRISPR/Cas9 was used specifically to edit/disrupt this gene's early coding sequence in mouse and macaque photoreceptors in vivo, thereby knocking out retGC1 expression and demonstrably altering retinal function and structure. Neither preexisting nor induced Cas9-specific T-cell responses resulted in ocular inflammation in macaques, nor did it limit GUCY2D editing. The results show, for the first time, the ability to perform somatic gene editing in primates using AAV-CRISPR/Cas9 and demonstrate the viability this approach for treating inherited retinal diseases in general and CORD6 in particular.


Subject(s)
CRISPR-Cas Systems , Dependovirus/genetics , Gene Editing , Guanylate Cyclase/genetics , Receptors, Cell Surface/genetics , Retina/metabolism , Animals , Base Sequence , Electroretinography , Genes, Reporter , Genetic Vectors/genetics , Guanylate Cyclase/metabolism , Macaca , Mice , Mice, Knockout , Molecular Imaging/methods , Promoter Regions, Genetic , RNA, Guide, Kinetoplastida/chemistry , RNA, Guide, Kinetoplastida/genetics , Receptors, Cell Surface/metabolism , Retina/pathology
19.
Front Neurol ; 9: 1000, 2018.
Article in English | MEDLINE | ID: mdl-30542318

ABSTRACT

Purpose: Intrinsically photosensitive retinal ganglion cells (ipRGCs) contain the photopigment melanopsin, and are primarily involved in non-image forming functions, such as the pupillary light reflex and circadian rhythm entrainment. The goal of this study was to develop and validate a targeted ipRGC immunotoxin to ultimately examine the role of ipRGCs in macaque monkeys. Methods: An immunotoxin for the macaque melanopsin gene (OPN4), consisting of a saporin-conjugated antibody directed at the N-terminus, was prepared in solutions of 0.316, 1, 3.16, 10, and 50 µg in vehicle, and delivered intravitreally to the right eye of six rhesus monkeys, respectively. Left eyes were injected with vehicle only. The pupillary light reflex (PLR), the ipRGC-driven post illumination pupil response (PIPR), and electroretinograms (ERGs) were recorded before and after injection. For pupil measurements, 1 and 5 s pulses of light were presented to the dilated right eye while the left pupil was imaged. Stimulation included 651 nm (133 cd/m2), and 4 intensities of 456 nm (16-500 cd/m2) light. Maximum pupil constriction and the 6 s PIPR were calculated. Retinal imaging was performed with optical coherence tomography (OCT), and eyes underwent OPN4 immunohistochemistry to evaluate immunotoxin specificity and ipRGC loss. Results: Before injection, animals showed robust pupil responses to 1 and 5 s blue light. After injection, baseline pupil size increased 12 ± 17%, maximum pupil constriction decreased, and the PIPR, a marker of ipRGC activity, was eliminated in all but the lowest immunotoxin concentration. For the highest concentrations, some inflammation and structural changes were observed with OCT, while eyes injected with lower concentrations appeared normal. ERG responses showed better preserved retinal function with lower concentrations. Immunohistochemistry showed 80-100% ipRGC elimination with the higher doses being more effective; however this could be partly due to inflammation that occurred at the higher concentrations. Conclusion: Findings demonstrated that the OPN4 macaque immunotoxin was specific for ipRGCs, and induced a graded reduction in the PLR, as well as, in ipRGC-driven pupil response with concentration. Further investigation of the effects of ipRGC ablation on ocular and systemic circadian rhythms and the pupil in rhesus monkeys will provide a better understanding of the role of ipRGCs in primates.

20.
Invest Ophthalmol Vis Sci ; 59(3): 1486-1502, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29625471

ABSTRACT

Purpose: These experiments were designed to reveal the location of the premotor neurons that have previously been designated physiologically as the midbrain near response cells controlling vergence, lens accommodation, and pupillary constriction in response to target distance. Methods: To identify this population, the fixed N2c strain of rabies virus was injected into the ciliary body of seven Macaca fascicularis monkeys. The virus was trans-synaptically transported to the brain. Following a 58- to 76-hour survival, animals were perfused with formalin fixative. After frozen sectioning, tissue was reacted to reveal the location of the infected populations by use of a monoclonal anti-rabies antibody. Another series of sections was processed to determine which of the rabies-positive cells were cholinergic motoneurons by use of an antibody to choline acetyl transferase. Results: At earlier time points, only cholinergic cells in the preganglionic Edinger-Westphal nucleus ipsilateral to the injection were labeled. At later time points, an additional population of noncholinergic, premotor cells was present. These were most numerous at the caudal end of the supraoculomotor area, where they formed a bilateral band, oriented mediolaterally immediately above the oculomotor nucleus. Rostral to this, a smaller bilateral population was located near the midline within the supraoculomotor area. Conclusions: Most lens preganglionic motoneurons are multipolar cells making up a continuous column within the Edinger-Westphal nucleus. A population of premotor cells that likely represents the midbrain near response cells is located in the supraoculomotor area. These cells are bilaterally distributed relative to the eye they control, and are most numerous caudally.


Subject(s)
Mesencephalon/anatomy & histology , Motor Cortex/anatomy & histology , Motor Neurons/cytology , Oculomotor Nuclear Complex/cytology , Animals , Macaca fascicularis , Neural Pathways/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...