Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Astrophys J ; 864(1)2019 Sep 01.
Article in English | MEDLINE | ID: mdl-32801381

ABSTRACT

Sgr A*, the supermassive black hole (SMBH) at the center of our Milky Way Galaxy, is known to be a variable source of X-ray, near-infrared (NIR), and submillimeter radiation and therefore a prime candidate to study the electromagnetic radiation generated by mass accretion flow onto a black hole and/or a related jet. Disentangling the power source and emission mechanisms of this variability is a central challenge to our understanding of accretion flows around SMBHs. Simultaneous multiwavelength observations of the flux variations and their time correlations can play an important role in obtaining a better understanding of possible emission mechanisms and their origin. This paper presents observations of two flares that both apparently violate the previously established patterns in the relative timing of submillimeter/NIR/X-ray flares from Sgr A*. One of these events provides the first evidence of coeval structure between NIR and submillimeter flux increases, while the second event is the first example of the sequence of submillimeter/X-ray/NIR flux increases all occurring within ~1 hr. Each of these two events appears to upend assumptions that have been the basis of some analytic models of flaring in Sgr A*. However, it cannot be ruled out that these events, even though unusual, were just coincidental. These observations demonstrate that we do not fully understand the origin of the multiwavelength variability of Sgr A* and show that there is a continued and important need for long-term, coordinated, and precise multiwavelength observations of Sgr A* to characterize the full range of variability behavior.

2.
Astrophys J ; 863(1)2018 Aug 10.
Article in English | MEDLINE | ID: mdl-32855558

ABSTRACT

Sagittarius A* (Sgr A*) is the variable radio, near-infrared (NIR), and X-ray source associated with accretion onto the Galactic center black hole. We present an analysis of the most comprehensive NIR variability data set of Sgr A* to date: eight 24 hr epochs of continuous monitoring of Sgr A* at 4.5 µm with the IRAC instrument on the Spitzer Space Telescope, 93 epochs of 2.18 µm data from Naos Conica at the Very Large Telescope, and 30 epochs of 2.12 µm data from the NIRC2 camera at the Keck Observatory, in total 94,929 measurements. A new approximate Bayesian computation method for fitting the first-order structure function extracts information beyond current fast Fourier transformation (FFT) methods of power spectral density (PSD) estimation. With a combined fit of the data of all three observatories, the characteristic coherence timescale of Sgr A* is τ b = 243 - 57 + 82 minutes (90% credible interval). The PSD has no detectable features on timescales down to 8.5 minutes (95% credible level), which is the ISCO orbital frequency for a dimensionless spin parameter a = 0.92. One light curve measured simultaneously at 2.12 and 4.5 µm during a low flux-density phase gave a spectral index α s = 1.6 ± 0.1 ( F ν ∝ ν - α s ) . This value implies that the Sgr A* NIR color becomes bluer during higher flux-density phases. The probability densities of flux densities of the combined data sets are best fit by log-normal distributions. Based on these distributions, the Sgr A* spectral energy distribution is consistent with synchrotron radiation from a non-thermal electron population from below 20 GHz through the NIR.

3.
Nature ; 481(7379): 51-4, 2011 Dec 14.
Article in English | MEDLINE | ID: mdl-22170607

ABSTRACT

Measurements of stellar orbits provide compelling evidence that the compact radio source Sagittarius A* at the Galactic Centre is a black hole four million times the mass of the Sun. With the exception of modest X-ray and infrared flares, Sgr A* is surprisingly faint, suggesting that the accretion rate and radiation efficiency near the event horizon are currently very low. Here we report the presence of a dense gas cloud approximately three times the mass of Earth that is falling into the accretion zone of Sgr A*. Our observations tightly constrain the cloud's orbit to be highly eccentric, with an innermost radius of approach of only ∼3,100 times the event horizon that will be reached in 2013. Over the past three years the cloud has begun to disrupt, probably mainly through tidal shearing arising from the black hole's gravitational force. The cloud's dynamic evolution and radiation in the next few years will probe the properties of the accretion flow and the feeding processes of the supermassive black hole. The kilo-electronvolt X-ray emission of Sgr A* may brighten significantly when the cloud reaches pericentre. There may also be a giant radiation flare several years from now if the cloud breaks up and its fragments feed gas into the central accretion zone.

SELECTION OF CITATIONS
SEARCH DETAIL
...