Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
J Pharm Biomed Anal ; 248: 116288, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38981330

ABSTRACT

Germacrone and curdione are germacrane-type sesquiterpenoids that are widely distributed and have extensive pharmacological activities; they are the main constituents of 'Xing-Nao-Jing Injection' (XNJ). Studies on the metabolic features of germacrane-type sesquiterpenoids are limited. In this study, the metabolites of germacrone and curdione were characterized by UHPLC-Q-Exactive Oribitrap mass spectrometry after they were orally administered to rats. In total, 60 and 76 metabolites were found and preliminarily identified in rats administered germacrone and curdione, respectively, among which at least 123 potential new compounds were included. New metabolic reactions of germacrane-type sesquiterpenoids were identified, which included oxidation (+4 O and +5 O), ethylation, methyl-sulfinylation, vitamin C conjugation, and cysteine conjugation reactions. Among the 136 metabolites (including 113 oxidation metabolites, two glucuronidation, two methylation, nine methyl-sulfinylation, three ethylation, six cysteine conjugation, and one Vitamin C conjugation metabolites), 32 metabolites were detected in nine organs, and the stomach, intestine, liver, kidneys, and small intestine were the main organs for the distribution of these metabolites. All 136 metabolites were detected in urine and 64 of them were found in feces. The results of this study not only contribute to research on in vivo processes related to germacrane-type sesquiterpenoids but also provide a strong foundation for a better understanding of in vivo processes and the effective forms of germacrone, curdione, and XNJ.

2.
Zhongguo Zhong Yao Za Zhi ; 41(9): 1640-1645, 2016 May.
Article in Chinese | MEDLINE | ID: mdl-28891612

ABSTRACT

To establish and analyze the HPLC specific chromatograms of Xingnaojing injection manufactured by different factories. The separation was performed on a Thermo BDS Hypersil C18 column (4.6 mm×250 mm, 5 µm), with the mobile phase consisting of acetonitrile-0.02% formic acid aqueous solution for gradient elution. The flow rate was 1.0 mL•min⁻¹, and the column temperature was 35 ℃. The detection wavelength was set at 254 nm, and the sample size was 20 µL. Eleven chromatographic peaks were identified as characteristic peaks of HPLC specific chromatograms of Xingnaojing injection, after analyzing 29 batches of Xingnaojing injection samples. Compared with the reference substances, seven of them were identified as eucarvone, camphor, curcumenone, curcumenol, curdione, curzerenone and germacrone, respectively. HPLC specific chromatograms of Xingnaojing injection manufactured by three factories could be easily classified into three categories after investigation with computer-aided similarity evaluation system combined with principal component analysis. The established HPLC specific chromatograms provide a basis for scientific evaluation and effective control of the quality of Xingnaojing injection.


Subject(s)
Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/chemistry , Injections , Quality Control
SELECTION OF CITATIONS
SEARCH DETAIL
...