Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Phytomedicine ; 128: 155501, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38471318

ABSTRACT

BACKGROUND: The discovering of an osteoclast (OC) coupling active agent, capable of suppressing OC-mediated bone resorption while concurrently stimulating osteoblast (OB)-mediated bone formation, presents a promising strategy to overcome limitations associated with existing antiresorptive agents. However, there is a lack of research on active OC coupling agents. PURPOSE: This study aims to investigate the potential of Jiangu Formula (JGF) in inhibiting OCs while maintaining the OCOB coupling function. METHODS: The anti-osteoporosis efficacy of JGF was evaluated in osteoporosis models induced by ovariectomy in C57BL/6 mouse and SD rats. The effect of JGF on OCs was evaluated by detecting its capacity to inhibit OC differentiation and bone resorption in an in vitro osteoclastogenesis model induced by RANKL. The OCOB coupling activity of JGF was evaluated by measuring the secretion levels of OC-derived coupling factors, OB differentiation activity of MC3T3-E1 interfered with conditioned medium, and the effect of JGF on OC inhibition and OB differentiation in a C3H10T1/2-RAW264.7 co-culture system. The mechanism of JGF was studied by network pharmacology and validated using western blot, immunofluorescence (IF), and ELISA. Following that, the active ingredients of JGF were explored through a chemotype-assembly approach, activity evaluation, and LC-MS/MS analysis. RESULTS: JGF inhibited bone resorption in murine osteoporosis without compromising the OCOB coupling effect on bone formation. In vitro assays showed that JGF preserved the coupling effect of OC on OB differentiation by maintaining the secretion of OC-derived coupling factors. Network analysis predicted STAT3 as a key regulation point for JGF to exert anti-osteoporosis effect. Further validation assays confirmed that JGF upregulated p-STAT3(Ser727) and its regulatory factors IL-2 in RANKL-induced RAW264.7 cells. Moreover, 23 components in JGF with anti-OC activity identified by chemotype-assembly approach and verification experiments. Notably, six compounds, including ophiopogonin D, ginsenoside Re, ginsenoside Rf, ginsenoside Rg3, ginsenoside Ro, and ononin were identified as OC-coupling compounds. CONCLUSION: This study first reported JGF as an agent that suppresses bone loss without affecting bone formation. The potential coupling mechanism of JGF involves the upregulation of STAT3 by its regulators IL-2. Additionally, the chemotype-assembly approach elucidated the activity compounds present in JGF, offering a novel strategy for developing an anti-resorption agent that preserves bone formation.


Subject(s)
Bone Resorption , Cell Differentiation , Drugs, Chinese Herbal , Mice, Inbred C57BL , Osteoblasts , Osteoclasts , Osteoporosis , Rats, Sprague-Dawley , Animals , Osteoclasts/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Mice , Osteoporosis/drug therapy , Osteoblasts/drug effects , Female , RAW 264.7 Cells , Cell Differentiation/drug effects , Bone Resorption/drug therapy , Ovariectomy , RANK Ligand , Rats , Osteogenesis/drug effects , Disease Models, Animal , STAT3 Transcription Factor/metabolism
2.
Cell Cycle ; 22(18): 2003-2017, 2023 09.
Article in English | MEDLINE | ID: mdl-37872772

ABSTRACT

BACKGROUND: Gastric cancer is a common malignant tumor of the digestive tract and the fourth leading cause of death from cancer-related diseases. In recent years, many studies have found that circular RNAs play an important role in cancer. Tumor-associated macrophages (TAMs) are also critical for tumor progression. OBJECTIVE: This study examined the role of circRNA_102191 in gastric cancer progression. METHODS: The relative mRNA levels were determined by qRT-PCR. Western blotting and ELISA were used to detect the protein levels. In vitro proliferation was assessed using CCK8 and clonogenic assays. The migration and invasion of cell lines were assessed by transwell-based assays. The interactions between molecules were detected using a luciferase reporter assay. M0 macrophages were induced with PMA. M1 macrophages were induced with LPS and IFN-γ, and M2 macrophages were induced with IL-4. RESULTS: The expression of circRNA_102191 was enhanced significantly in gastric cancer cell lines and clinical tumor tissues. CircRNA_102191 promotes gastric cancer cell progression by regulating miR-493-3p and its downstream target gene XPR1. CircRNA_102191 can enhance the EMT process of gastric cancer cells by promoting the M2 polarization of macrophages. CONCLUSION: CircRNA_102191 promotes the biological function of gastric cancer cells by regulating the miR-493-3p/XPR1 axis and M2 macrophage polarization.


Subject(s)
MicroRNAs , Stomach Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Stomach Neoplasms/pathology , Macrophages/metabolism , Cell Line, Tumor , Cell Proliferation/genetics
3.
Front Cell Dev Biol ; 11: 1187638, 2023.
Article in English | MEDLINE | ID: mdl-37215092

ABSTRACT

One of the most prevalent malignant tumors of the digestive tract is gastric cancer (GC). Age, high salt intake, Helicobacter pylori (H. pylori) infection, and a diet deficient in fruits and vegetables are risk factors for the illness. A significant risk factor for gastric cancer is infection with H. pylori. Infecting gastric epithelial cells with virulence agents secreted by H. pylori can cause methylation of tumor genes or carcinogenic signaling pathways to be activated. Regulate downstream genes' aberrant expression, albeit the precise mechanism by which this happens is unclear. Oncogene, oncosuppressor, and other gene modifications, as well as a number of different gene change types, are all directly associated to the carcinogenesis of gastric cancer. In this review, we describe comprehensive H. pylori and its virulence factors, as well as the activation of the NF-κB, MAPK, JAK/STAT signaling pathways, and DNA methylation following infection with host cells via virulence factors, resulting in abnormal gene expression. As a result, host-related proteins are regulated, and gastric cancer progression is influenced. This review provides insight into the H. pylori infection, summarizes a series of relevant papers, discusses the complex signaling pathways underlying molecular mechanisms, and proposes new approach to immunotherapy of this important disease.

4.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(2): 157-164, 2023 Feb 28.
Article in English, Chinese | MEDLINE | ID: mdl-36999461

ABSTRACT

OBJECTIVES: Gastric cancer is a common cancer of the digestive system. Long non-coding RNA (lncRNA) plays an important role in the formation and development of gastric cancer. This study aims to investigate the effect of long non-coding lncRNA 114227 on biologic behaviors in gastric cancer cells. METHODS: The experiment was divided into 4 groups: a negative control (NC) group, a lncRNA 114227 small interference (si-lncRNA 114227) group, an empty vector (Vector) group, and an overexpression vector (OE-lncRNA 114227) group. The expressions of lncRNA 114227 in gastric mucosa and gastric cancer tissues, gastric mucosal epithelial cells and different gastric cancer strains were determined by real-time reverse transcription PCR (real-time RT-PCR).The proliferation were detected by CCK-8 assay in gastric cancer cells. The epithelial-mesenchymal transformation (EMT) was utilized by Transwell assay, scratch healing assay, and Western blotting in gastric cancer cells. The effect of lncRNA 114227 on proliferation of gastric cancer cells was detected by tumor bearing experiment in nude mice in vivo. RESULTS: The expression level of lncRNA 114227 in the gastric cancer tissues was significantly lower than that in the gastric mucosa tissues, and in 4 kinds of gastric cancer strains was all significantly lower than that in gastric mucosal epithelial cells (all P<0.01). In vitro, the proliferation and migration abilities of gastric cells were significantly reduced after overexpressing lncRNA 114227, and cell proliferation and migration were enhanced after silencing lncRNA 114227 (all P<0.05). The results of in vivo subcutaneous tumorigenesis in nude mice showed that the tumorigenic volume of the tumor-bearing mice in the OE-lncRNA 114227 group was significantly smaller than that of the Vector group, and the tumorigenic quality was lower than that of the Vector group (P<0.05), indicating that lncRNA 114227 inhibited tumorigenesis. CONCLUSIONS: The expression of lncRNA 114227 is downregulated in gastric cancer gastric cancer tissues and cell lines. LncRNA 114227 may inhibit the proliferation and migration of gastric cancer cells through EMT process.


Subject(s)
RNA, Long Noncoding , Stomach Neoplasms , Animals , Mice , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Mice, Nude , Cell Line, Tumor , Cell Proliferation/genetics , Carcinogenesis/genetics , Cell Movement/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Apoptosis/genetics
5.
Front Pharmacol ; 13: 881078, 2022.
Article in English | MEDLINE | ID: mdl-35959429

ABSTRACT

Background: Promoting cholesterol reverse transport (RCT) has been proven to be a promising hyperlipidemia therapy since it is more effective for the treatment of atherosclerosis (AS) caused by hyperlipidemia. Liver X receptor (LXR) agonists can accelerate RCT, but most of them trigger undesirable liver steatosis due to the activation of liver LXRα. Aim: We aim to figure out whether isochlorogenic acid C (ICAC) facilitates RCT without causing hepatic steatosis. Methods: In vitro study, we established foam macrophages and macrophages with loaded NBD-cholesterol models to investigate the competence of RCT promoting ICAC. RT-qPCR and Western blot were used to verify ICAC's regulation of RCT and NF-κB inflammatory pathways. In this in vivo study, male 6-week-old C57BL/6 mice were fed a high-fat diet (HFD) to investigate ICAC's anti-hyperlipidemic effect and its functions in regulating RCT. The anti-hyperlipidemic effect of ICAC was evaluated by blood and liver lipid levels, liver hematoxylin, oil red o staining, and liver coefficient. Finally, mRNA levels of genes involved in RCT and inflammation pathways in the liver and intestine were detected by RT-qPCR. Results: ICAC prevented macrophages from foaming by up-regulating the LXRα mediated RCT pathway and down-regulating expression of the cholesterol absorption genes LDLR and CD36, as well as suppressing iNOS, COX2, and IL-1ß inflammatory factors. In HFD-fed mice, ICAC significantly lowered the lipid level both in the serum and the liver. Mechanistic studies showed that ICAC strengthened the RCT pathway in the liver and intestine but didn't affect liver LXRα. Furthermore, ICAC impeded both adipogenesis and the inflammatory response in the liver. Conclusion: ICAC accelerated RCT without affecting liver LXRα, thus resulting in a lipid-lowering effect without increasing liver adipogenesis. Our results indicated that ICAC could be a new RCT promoter for hyperlipidemia treatment without causing liver steatosis.

6.
Biol Pharm Bull ; 45(4): 409-420, 2022.
Article in English | MEDLINE | ID: mdl-35370265

ABSTRACT

Ginkgolide B (GKB) is a well-established neuroprotectant for acute ischemia stroke. However, its cerebral exposure and real-time response remain elusive in acute ischemia/reperfusion stage, and it hinders its usage in therapeutic window of ischemia stroke. Therefore, we investigate the exposure-response relationship of GKB (10 mg/kg, intravenously (i.v.)) as well as its neuroprotective mechanism in acute ischemia/reperfusion rats. Cerebral and plasma exposure of GKB is comparatively explored in both of normal rats and acute ischemia/reperfusion rats. Correspondingly, neurological function and brain jury indexes were assessed at each time point, and superoxide dismutase (SOD), malondialdehyde (MDA), platelet activator factor (PAF) and thromboxane A2 (TXA2) are indexed as pharmacological response to GKB. Exposure-response relationships are analyzed by using linear regression. Additionally, cerebral expressions of proteins in PAF-regulated pathways are tested at each time point. Results show cerebral and plasma concentrations of GKB are much higher in acute ischemia/reperfusion rats than those in normal rats. Cerebral infarction, neurological function (NF) score, abnormal PAF and excessive MDA are significantly alleviated in 24 h after GKB injection, and PAF is reduced in exposure-response manner with significant concentration-response relationship (R2 = 0.9123). Regarding downstream proteins in intracellular PAF-regulated pathway, GKB progressively inhibits Bax, Caspase-3, p-p65 and p-IKK, while gradually restoring LC3B, p62 and p-mammalian target of rapamycin (mTOR) to the basic level within 24 h. Conclusively, GKB exhibits greater cerebral exposure in acute ischemia/reperfusion rats and neuroprotective effect through reducing PAF in exposure-response manner and mediating PAF-regulated intracellular signaling pathways. Our finding highlights clinical implications of GKB in therapeutic time window of ischemic stroke.


Subject(s)
Brain Ischemia , Neuroprotective Agents , Reperfusion Injury , Animals , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Ginkgolides , Lactones , Mammals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Rats , Reperfusion , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism
7.
Food Sci Nutr ; 10(1): 21-38, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35035907

ABSTRACT

Cordyceps militaris (CM) is traditionally used as dietary therapy for lung cancer patients in China. CM extract (CME) is hydrosoluble fraction of CM and extensively investigated. Caspase-3-involved cell death is considered as its major anticancer mechanism but inconclusive. Therefore, we explore its caspase-3-dependent programmed cell death nature (apoptosis and pyroptosis) and validate its caspase-3-dependent property in loss-of-function experiment. Component profile of CME is detected by High Performance Liquid Chromatography- quadrupole time-of-flight mass spectrometry (HPLC-qTOF). Results show that CME causes pyroptosis-featured cell bubbling and cell lysis and inhibits cell proliferation in A549 cell. CME induces chromatin condensing and makes PI+/annexin V+ staining in bubbling cells, indicating genotoxicity, apoptosis, and pyroptosis cell death are caused by CME. High concentration of CME (200 µg/ml) exerts G2/M and G0 cell cycles arresting and suppresses P53-downstream proliferative proteins, including P53, P21, CDC25B, CyclinB1, Bcl-2, and BCL2 associated agonist of cell death (BAD), but 1-100 µg/ml of CME show less effect on proteins above. Correspondingly, caspase-3 activity and caspase-3 downstream proteins including pyroptotic effector gasdermin-E (GSDME) and apoptotic marker cleaved-poly-ADP-ribose polymerase (PARP) are significantly promoted by CME. Moreover, regarding membrane pore formation in pyroptotic cell, expression of membrane GSDME (GSDME antibody conjugated with PE-Cy7 for detection in flow cytometry) is remarkably increased by CME treatment. By contrast, other pyroptosis-related proteins such as P2X7, NLRP3, GSDMD, and Caspase-1 are not affected after CME treatment. Additionally, TET2 is unexpectedly raised by CME. In present of caspase-3 inhibitor Ac-DEVD-CHO (Ac-DC), CME-induced cytotoxicity, cell bubbling, and genotoxicity are reduced, and CME-induced upregulation of apoptosis (cleaved-PARP-1) and pyroptosis (GSDME-NT) proteins are reversed. Lastly, 22 components are identified in HPLC-qTOF experiment, and they are classified into trophism, neoadjuvant component, cytotoxic component, and cancer deterioration promoter according to previous references. Conclusively, CME causes caspase-3-dependent apoptosis and pyroptosis in A549 through caspase-3/PARP and caspase-3/GSDME pathways, and it provides basic insight into clinic application of CME for cancer patients.

8.
Lipids ; 55(2): 127-140, 2020 03.
Article in English | MEDLINE | ID: mdl-32058595

ABSTRACT

Tanshinol A, which is derived from a traditional Chinese herbal Radix Salviae Miltiorrhizae is indicative of a hypolipidemic candidate. Therefore, we aim to validate its hypolipidemic activity of tanshinol A and explore its mechanism in triton-1339W-induced hyperlipidemic mice model, which possess multiply pathogenesis for endogenous lipid metabolism disorder. Experimental hyperlipidemia mice are treated with or without tanshinol A (i.g. 40, 20, 10 mg/kg), and blood and liver tissue were collected for validating its hypolipidemic and hepatic protective effect, and hepatic mRNA expression profile, which was associated with lipid metabolism dysfunction and liver injury, was detected by RT-qPCR. As results show, triton-1339W-induced abnormal of serum TC, TAG, HDL-C, LDL-C, SOD, MDA, GOT, and GPT is remarkably attenuated by tanshinol A. In pathological experiment, triton-1339W-induced hepatocellular ballooning degeneration, irregular central vein congestion, and inflammation infiltration are alleviated by tanshinol A. Correspondingly, hepatic mRNA expression of Atf4, Fgf21, Vldlr, Nqo1, Pdk4, and Angptl4, which are genes regulating lipemic-oxidative injury, are significantly increased by tanshinol A by 2~6 fold. Abcg5, Cd36, and Apob, which are responsible for cholesterol metabolism, are mildly upregulated. Noticeably, triton-1339W-suppressed expressions of Ptgs2/Il10, which are genes responsible for acute inflammation resolution in liver injury, are remarkably increased by tanshinol A. Conclusively, tanshinol A exerted hypolipidemic effect and hepatoprotective effect through restoring triton-1339W-suppressed mRNA expression, which may be involved in Atf4/Fgf21/Vldlr and Ptgs2/Il-10 signaling pathways.


Subject(s)
Caffeic Acids/administration & dosage , Chemical and Drug Induced Liver Injury/drug therapy , Gene Expression Profiling/methods , Gene Regulatory Networks/drug effects , Hyperlipidemias/drug therapy , Polyethylene Glycols/adverse effects , Animals , Caffeic Acids/chemistry , Caffeic Acids/pharmacology , Chemical and Drug Induced Liver Injury/genetics , Disease Models, Animal , Gene Expression Regulation/drug effects , Hyperlipidemias/chemically induced , Hyperlipidemias/genetics , Lipid Metabolism/drug effects , Lipids/blood , Male , Mice , Mice, Inbred C57BL , Oxidative Stress , Signal Transduction/drug effects
9.
Mol Ther ; 27(6): 1114-1125, 2019 06 05.
Article in English | MEDLINE | ID: mdl-30962163

ABSTRACT

By fusing the extracellular domain of the natural killer (NK) cell receptor NKG2D to DAP12, we constructed a chimeric antigen receptor (CAR) to improve NK cell tumor responses. An RNA electroporation approach that provides transient expression of the CAR was adopted as a risk mitigation strategy. Expression of the NKG2D RNA CAR significantly augmented the cytolytic activity of NK cells against several solid tumor cell lines in vitro and provided a clear therapeutic benefit to mice with established solid tumors. Three patients with metastatic colorectal cancer were then treated with local infusion of the CAR-NK cells. Reduction of ascites generation and a marked decrease in number of tumor cells in ascites samples were observed in the first two patients treated with intraperitoneal infusion of low doses of the CAR-NK cells. The third patient with metastatic tumor sites in the liver was treated with ultrasound-guided percutaneous injection, followed by intraperitoneal infusion of the CAR-NK cells. Rapid tumor regression in the liver region was observed with Doppler ultrasound imaging and complete metabolic response in the treated liver lesions was confirmed by positron emission tomography (PET)- computed tomographic (CT) scanning. Our results highlight a promising therapeutic potential of using RNA CAR-modified NK cells to treat metastatic colorectal cancer.


Subject(s)
Adoptive Transfer/methods , Cell Transplantation/methods , Colorectal Neoplasms/therapy , Killer Cells, Natural/immunology , Killer Cells, Natural/transplantation , NK Cell Lectin-Like Receptor Subfamily K/genetics , Receptors, Chimeric Antigen/immunology , Adoptive Transfer/adverse effects , Animals , Cell Engineering/methods , Cell Transplantation/adverse effects , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Cytotoxicity, Immunologic/genetics , Feasibility Studies , Female , Genetic Vectors , HCT116 Cells , Humans , Killer Cells, Natural/metabolism , Lymphocyte Activation , Male , Mice , Mice, Inbred NOD , Mice, SCID , Middle Aged , Pilot Projects , RNA, Messenger/genetics , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Treatment Outcome , Xenograft Model Antitumor Assays
10.
J Pharm Biomed Anal ; 172: 58-66, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31029801

ABSTRACT

Curcumin (CUR) is a bioactive compound present in many composite prescriptions of traditional Chinese medicine together with quercetin (QR) and paeoniflorin (PF). Little is known about the influence of QR and PF on the absorption and metabolism of CUR when the three compounds are orally co-administered. In this study, a rapid, sensitive, and reliable ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed and validated for the simultaneous determination of CUR, tetrahydrocurcumin (THC), QR, and PF in rat plasma by using tinidazole as the internal standard (IS). A liquid-liquid extraction method with ethyl acetate was used to pre-treat the plasma samples. Chromatographic separation was conducted on a C18 column with isocratic elution using acetonitrile and 0.1% formic acid water solution (80:20, v/v) as the mobile phase at the flow rate of 0.3 mL/min. A TSQ Quantum Access Max API mass spectrometer equipped with electrospray ionisation (ESI) source in selection reaction monitoring (SRM) mode was employed to determine transitions of m/z 369.0 → 176.9, 373.1 → 137.0, 303.0 → 228.9, 478.9 → 120.9, 248.1 → 121.0 for CUR, THC, QR, PF, and IS, respectively. The selectivity, precision, accuracy, extraction recovery, matrix effect, and stability of the method were validated. This developed and validated method was successfully applied in the pharmacokinetic study of CUR, THC, QR, and PF in rats. The effects of QR and PF on the pharmacokinetics of CUR and its metabolite, THC, were evaluated in the plasma of Sprague-Dawley rats that were orally co-administered CUR, QR, and PF. The results showed that the combined use of QR, PF, and CUR has a possible influence on the metabolism and excretion of CUR. Our work provides a fundamental method for the rapid simultaneous determination of CUR, THC, QR, and PF in rat plasma. Furthermore, this study will provide a basic method for the analysis of pharmacokinetic interaction of CUR, QR, and PF and offer a scientific basis for a possible combination therapy with the three compounds.


Subject(s)
Drug Monitoring/methods , Drugs, Chinese Herbal/pharmacokinetics , Liquid-Liquid Extraction/methods , Administration, Oral , Animals , Chromatography, High Pressure Liquid/methods , Curcumin/administration & dosage , Curcumin/analogs & derivatives , Curcumin/analysis , Curcumin/pharmacokinetics , Drug Interactions , Drug Therapy, Combination/methods , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/analysis , Glucosides/administration & dosage , Glucosides/analysis , Glucosides/pharmacokinetics , Limit of Detection , Male , Monoterpenes/administration & dosage , Monoterpenes/analysis , Monoterpenes/pharmacokinetics , Quercetin/administration & dosage , Quercetin/analysis , Quercetin/pharmacokinetics , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry/methods
11.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1097-1098: 128-141, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30241074

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by dysfunction of glycolipid metabolism. YLTZ is used to treat hyperlipidemia, yet its hypolipidemic and hypoglycemic mechanism on T2DM are unknown. Thus, UPLC/TOF/MS was applied in this study to identify the potential bio-markers, and deduce the possible metabolic pathways. According to bio-indexes, the increased blood lipid levels, including TC, TG, LDL and FA, and the decreased HDL, the elevated glucose, reduced insulin level and impaired OGTT were observed in diabetic rat model. While YLTZ can decrease the lipid levels and glucose content, as well as increased insulin standards and improve OGTT. After data from UPLC/TOF/MS processed, 17 metabolites were obtained, including phospholipids (LPCs, PCs and PGP (18:1)), beta-oxidation production (HAA, VAG and CNE) and precursors (THA), bile acid (CA, CDCA and IDCA), hydrolysate of TG (MG (22:4)), glycometabolism (G6P), cholesterol-driven synthetics (ADO) and production of arachidonate acid (THETA). As a result, YLTZ was able to reduce LPCs, PCs, PGP (18:1), HAA, VAG, CNE, CA, ADO and THETA, as well as enhance MG (22:4) and G6P. After analyzing results, several metabolic pathways were deduced, which containing, cholesterol synthesis and elimination, FA beta-oxidation, TG hydrolysis, phospholipids synthesis, glycolysis, gluconeogenesis and inflammation. Consequently, YLTZ performed to prohibit the FA beta-oxidation, synthesis of cholesterol and phospholipids, gluconeogenesis and inflammation level, as well as promote TG hydrolysis, glycolysis and blood circulation. Hence, applying metabonomics in TCM research can uncover its pharmacological edges, elucidating comprehensively that YLTZ has capacity of hypolipidemic, hypoglycemic and promoting blood circulation, matching the effect of removing blood stasis, eliminating phlegm and dampness.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Drugs, Chinese Herbal/pharmacology , Ginkgo biloba , Glycolipids/metabolism , Gynostemma , Propolis/pharmacology , Animals , Biomarkers/blood , Biomarkers/metabolism , Chromatography, High Pressure Liquid/methods , Glycolipids/blood , Lipid Metabolism/drug effects , Male , Mass Spectrometry/methods , Metabolome/drug effects , Metabolomics/methods , Phytotherapy/methods , Propolis/chemistry , Rats , Rats, Wistar
12.
Phytother Res ; 32(7): 1364-1372, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29577459

ABSTRACT

This study was designed to investigate the precancerous lesions of gastric carcinoma (PLGC)-reversing mechanisms of astragaloside IV (ASIV) in N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced PLGC rats. All rats were sacrificed after 10-week treatment. Gastric tissue was analyzed by using histopathology and electron microscope. To be fully evidenced, LDHA, p53, TIGAR, MCT1, MCT4, HIF-1α, CD147, and miRNA-34a were detected by Western blotting and Real-time Quantitative polymerase chain reaction (RT-qPCR). As histopathology and electron microscope showed, it can be clearly observed that the area of dysplasia was reduced in ASIV groups, indicating that MNNG-induced PLGC was markedly reversed by ASIV. Moreover, compared with model group, a significant decrease in gene expressions of LDHA, MCT1, MCT4, HIF-1α, CD147, and TIGAR was observed whereas miRNA-34a level was increased in ASIV groups. A significant up-regulation induced by MNNG in protein levels of LDHA, MCT1, MCT4, HIF-1α, and CD147 was attenuated in rats treated with ASIV. In contrast, the decreased expression of TIGAR was restored by ASIV. Interestingly, up-regulation of p53 expression induced by MNNG was further increased in ASIV groups. In brief, these results implied that abnormal glycolysis was relieved by ASIV via regulation of the expressions of LDHA, p53, TIGAR, MCT1, MCT4, HIF-1α, CD147, and miRNA-34a.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Glycolysis/physiology , Saponins/therapeutic use , Stomach Neoplasms/drug therapy , Triterpenes/therapeutic use , Animals , Drugs, Chinese Herbal/pharmacology , Male , Rats , Rats, Sprague-Dawley , Saponins/pharmacology , Stomach Neoplasms/pathology , Triterpenes/pharmacology
13.
Mol Med Rep ; 17(4): 5132-5142, 2018 04.
Article in English | MEDLINE | ID: mdl-29393432

ABSTRACT

Type 2 diabetic mellitus (T2DM), which is characterized by insulin resistance (IR), hyperglycemia and hyperlipidemia, is a comprehensive dysfunction of metabolism. The insulin receptor (INSR)/phosphoinositide 3­kinase (PI3K)/AKT signaling pathway is well acknowledged as a predominant pathway associated with glucose uptake; however, the effect of streptozotocin (STZ) plus a high fat and sugar diet (HFSD) on the proteins associated with this pathway requires further elucidation. In order to explore this effect, a T2DM rat model was constructed to investigate T2DM pathogenesis and potential therapeutic advantages. Rats were randomly divided into control and model groups, including normal diet (ND) and HFSD types. ND types were administered intraperitoneal (IP) injections of STZ (35 mg/kg) or a combination of STZ and alloxan monohydrate (AON) (40 mg/kg), whereas HFSD types were composed of HFSD pre­given, post­given and simul­given groups, and were modeled as follows: IP or intramuscular (IM) injection of STZ (35 mg/kg) or a combination of STZ and AON (40 mg/kg). Results indicated that, compared with controls, blood glucose, insulin, homeostatic model assessment­insulin resistance and total triglyceride were significantly elevated in groups with HFSD and modeling agents (P<0.05 or P<0.01), whereas total cholesterol and low­density lipoprotein levels were significantly elevated in groups simultaneously administered HFSD and modeling agents (P<0.05 or P<0.01), in addition to downregulation of the expression of insulin signaling pathway proteins in the liver, including INSR, PI3K, AKT1, phosphatidylinositol-5-phosphate 4­kinase type­2α (PIP5Kα) and glucose transporter (GLUT)2, and increased expression of inflammatory factors, including p38, tumor necrosis factor (TNF)α and interleukin (IL)6. Furthermore, compared with other two HFSD types including pre­given and post­given group, the simul­given group that received IM injection with STZ exhibited decreased expression levels of major insulin signal pathway proteins INSR, PI3K, AKT1, PIP5Kα, GLUT2 or GLUT4 in the liver and pancreas (P<0.05 or P<0.01), whereas the opposite was observed in the skeletal muscle. In addition, the protein expression levels of phosphorylated­p38, p38, IL6 and TNFα in the simul­given group that received IM injection with STZ were increased (P<0.05 or P<0.01), and histopathology also indicated inflammation in pancreas and liver. The present findings suggest that a low dose of STZ may partially impair the ß cells of the pancreas, whereas long­term excess intake of HFSD may increase lipid metabolites, inhibit the insulin signaling pathway and activate the mitogen­activated protein kinase p38 signaling pathway. The combined action of STZ and AON may result in insulin resistance, which ultimately results in abnormalities in glucose and lipid metabolism. The present model, analogue to T2DM onset of humans, evaluated the medical effect on metabolic dysfunction and provides an insight into the underlining mechanism of IR.


Subject(s)
Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat , Dietary Sugars , Insulin/metabolism , Mitogen-Activated Protein Kinases/metabolism , Signal Transduction , Streptozocin/adverse effects , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Experimental , Disease Models, Animal , Glucose/metabolism , Lipids/blood , Muscle, Skeletal/metabolism , Organ Size , Organ Specificity , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Receptor, Insulin/metabolism
14.
Exp Ther Med ; 13(6): 3013-3020, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28587374

ABSTRACT

Shenmai injection (SMI) has been widely used as a therapy to treat a number of diseases. However, its anti-osteoarthritic properties have not yet been fully investigated. In the present study, the protective effect of SMI on knee articular cartilage of anterior cruciate ligament transected rabbits and interleukin-1ß (IL-1ß)-stimulated human chondrocytes was investigated. For the in vivo study, knee osteoarthritis (KOA) was induced in female New Zealand white rabbits by anterior cruciate ligament transection (ACLT) in the knee of right hind limb. Rabbits either underwent sham surgery or ACLT surgery. Out of the rabbits receiving ACLT surgery, half of the rabbits received one 0.3 ml Shenmai intra-articular injection in the knee per week for four weeks, following ACLT surgery. The other rabbits received the same volume of normal saline solution. The cartilage was subsequently collected for histological evaluation. For the in vitro study, cultured human chondrocytes were treated with 10 ng/ml IL-1ß in the presence or absence of 5 and 2% (v/v) SMI for 24 h. Nitric oxide (NO) and prostaglandin E2 (PGE2) levels in cell culture supernatant were assessed using a Griess reaction and ELISA respectively. The mRNA expression of cyclooxgenase-2 (COX-2), inducible nitric oxide synthase (iNOS), matrix metalloproteinase (MMP)-1, MMP-13 and tissue inhibitors of metalloproteinase-1 (TIMP-1) in chondrocytes were detected by reverse transcription-quantitative polymerase chain reaction. The results of the current study revealed that treatment with SMI ameliorated cartilage degradation in the ACLT rabbit model, and decreased levels of NO and PGE2. Furthermore, treatment with SMI decreased levels of COX-2, iNOS, MMP-1 and MMP-13 mRNA expression and increased TIMP-1 mRNA expression in IL-1ß-stimulated human chondrocytes. These results indicate that SMI suppresses inflammation and ameliorated cartilage degradation, making it a potential and promising therapeutic option to treat KOA.

15.
Biopharm Drug Dispos ; 38(1): 3-19, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27882569

ABSTRACT

Curcumin (CUR) is known to exert numerous health-promoting effects in pharmacological studies, but its low bioavailability hinders the development of curcumin as a feasible therapeutic agent. Piperine (PIP) has been reported to enhance the bioavailability of curcumin, but the underlying mechanism remains poorly understood. In an attempt to find the mechanism by which piperine enhances the bioavailability of curcumin, the dosage ratio (CUR: PIP) and pre-treatment with piperine were hypothesized as key factors for improving the bioavailability in this combination. Therefore, combining curcumin with piperine at various dose ratios (1:1 to 100:1) and pre-dosing with piperine (0.5-8 h prior to curcumin) were designed to investigate their contributions to the pharmacokinetic parameters of curcumin in rats and their effects on the expression of UGT and SULT isoforms. It was shown that the Cmax and AUC0-t of curcumin were slightly increased by 1.29 and 1.67 fold at a ratio of 20:1, while curcumin exposure was enhanced significantly in all the piperine pre-treated rats (0.5-8 h), peaking at 6 h (a 6.09-fold and 5.97-fold increase in Cmax and AUC0-t , p < 0.01), regardless of the unchanged t1/2 and Tmax . Also observed was a time-dependent inhibition of the hepatic expression of UGT1A6, 1A8, SULT1A1, 1A3, and the colonic expression of UGT1A6 that occurred within 6 h of piperine pre-treatment but was reversed at 8 h, which correlated with the changes in curcumin exposure. Similarly, the inhibitory effect of piperine on most of the UGTs and SULTs are time-dependent in Caco-2 and HepG2 cells. It is concluded that piperine pre-treatment time-dependently improves the bioavailability of curcumin through the reversible and selective inhibition of UGTs and SULTs. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Alkaloids/pharmacology , Arylsulfotransferase/metabolism , Benzodioxoles/pharmacology , Curcumin/pharmacokinetics , Glucuronosyltransferase/metabolism , Piperidines/pharmacology , Polyunsaturated Alkamides/pharmacology , Animals , Biological Availability , Caco-2 Cells , Colon/drug effects , Colon/metabolism , Drug Interactions , Hep G2 Cells , Humans , Liver/drug effects , Liver/metabolism , Male , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...