Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
ChemSusChem ; : e202400886, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899510

ABSTRACT

Recently, aqueous Zn-X (X=S, Se, Te, I2, Br2) batteries (ZXBs) have attracted extensive attention in large-scale energy storage techniques due to their ultrahigh theoretical capacity and environmental friendliness. To date, despite tremendous research efforts, achieving high energy density in ZXBs remains challenging and requires a synergy of multiple factors including cathode materials, reaction mechanisms, electrodes and electrolytes. In this review, we comprehensively summarize the various reaction conversion mechanism of zinc-sulfur (Zn-S) batteries, zinc-selenium (Zn-Se) batteries, zinc-tellurium (Zn-Te) batteries, zinc-iodine (Zn-I2) batteries, and zinc-bromine (Zn-Br2) batteries, along with recent important progress in the design and electrolyte of advanced cathode (S, Se, Te, I2, Br2) materials. Additionally, we investigate the fundamental questions of ZXBs and highlight the correlation between electrolyte design and battery performance. This review will stimulate an in-deep understanding of ZXBs and guide the design of conversion batteries.

2.
Small ; : e2400774, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38616778

ABSTRACT

Capacitive carbon cathodes deliver great potential for zinc-ion hybrid capacitors (ZHCs) due to their resource abundance and structural versatility. However, the dimension mismatch between the micropores of carbons and hydrated Zn2+ ions often results in unsatisfactory charge storage capability. Here well-arranged heterodiatomic carbon superstructures are reported with compatible pore dimensions for activating Zn2+ ions, initiated by the supramolecular self-assembly of 1,3,5-triazine-2,4,6-triamine and cyanuric acid via in-plane hydrogen-bonds and out-of-plane π-π interactions. Flower-shaped carbon superstructures expose more surface-active motifs, continuous charge-transport routes, and more importantly, well-developed pores. The primary subnanopores of 0.82 nm are size-exclusively accessible for solvated Zn2+ ions (0.86 nm) to maximize spatial charge storage, while rich mesopores (1-3 nm) allow for high-kinetics ion migration with a low activation energy. Such favorable superstructure cathodes contribute to all-round performance improvement for ZHCs, including high energy density (158 Wh kg-1), fast-charging ability (50 A g-1), and excellent cyclic lifespan (100 000 cycles). An anion-cation hybrid charge storage mechanism is elucidated for superstructure cathode, which entails alternate physical uptake of Zn2+/CF3SO3 - at electroactive pores and bipedal chemical binding of Zn2+ to electronegative carbonyl/pyridine motifs. This work expands the design landscape of carbon superstructures for advanced energy storage.

3.
Adv Sci (Weinh) ; 11(19): e2310319, 2024 May.
Article in English | MEDLINE | ID: mdl-38477446

ABSTRACT

Zinc-organic batteries (ZOBs) are receiving widespread attention as up-and-coming energy-storage systems due to their sustainability, operational safety and low cost. Charge carrier is one of the critical factors affecting the redox kinetics and electrochemical performances of ZOBs. Compared with conventional large-sized and sluggish Zn2+ storage, non-metallic charge carriers with small hydrated size and light weight show accelerated interfacial dehydration and fast reaction kinetics, enabling superior electrochemical metrics for ZOBs. Thus, it is valuable and ongoing works to build better ZOBs with non-metallic ion storage. In this review, versatile non-metallic cationic (H+, NH4 +) and anionic (Cl-, OH-, CF3SO3 -, SO4 2-) charge carriers of ZOBs are first categorized with a brief comparison of their respective physicochemical properties and chemical interactions with redox-active organic materials. Furthermore, this work highlights the implementation effectiveness of non-metallic ions in ZOBs, giving insights into the impact of ion types on the metrics (capacity, rate capability, operation voltage, and cycle life) of organic cathodes. Finally, the challenges and perspectives of non-metal-ion-based ZOBs are outlined to guild the future development of next-generation energy communities.

4.
Chem Sci ; 15(12): 4322-4330, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38516081

ABSTRACT

Dendrite growth and parasitic reactions of a Zn metal anode in aqueous media hinder the development of up-and-coming Zn-ion batteries. Optimizing the crystal growth after Zn nucleation is promising to enable stable cyclic performance of the anode, but directly regulating specific crystal plane growth for homogenized Zn electrodeposition remains highly challenging. Herein, a perfluoropolymer (Nafion) is introduced into an aqueous electrolyte to activate a thermodynamically ultrastable Zn/electrolyte interface for long-term Zn-ion batteries. The low adsorption energy (-2.09 eV) of Nafion molecules on Zn metal ensures the in situ formation of a Nafion-nanofilm during the first charge process. This ultrathin artificial solid electrolyte interface with zincophilic -SO3- groups guides the directional Zn2+ electrodeposition along the (002) crystal surface even at high current density, yielding a dendrite-free Zn anode. The synergic Zn/electrolyte interphase electrochemistry contributes an average coulombic efficiency of 99.71% after 4500 cycles for Zn‖Cu cells, and Zn‖Zn cells achieve an ultralong lifespan of over 7000 h at 5 mA cm-2. Besides, Zn‖MnO2 cells operate well over 3000 cycles. Even at -40 °C, Zn‖Zn cells achieve stable Zn2+ plating/stripping for 1200 h.

5.
Angew Chem Int Ed Engl ; 63(16): e202401049, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38372434

ABSTRACT

Bipolar organics fuse the merits of n/p-type redox reactions for better Zn-organic batteries (ZOBs), but face the capacity plafond due to low density of active units and single-electron reactions. Here we report multielectron redox-bipolar tetranitroporphyrin (TNP) with quadruple two-electron-accepting n-type nitro motifs and dual-electron-donating p-type amine moieties towards high-capacity-voltage ZOBs. TNP cathode initiates high-kinetics, hybrid anion-cation 10e- charge storage involving four nitro sites coordinating with Zn2+ ions at low potential and two amine species coupling with SO4 2- ions at high potential. Consequently, Zn||TNP battery harvests high capacity (338 mAh g-1), boosted average voltage (1.08 V), and outstanding energy density (365 Wh kg-1 TNP). Moreover, the extended π-conjugated TNP macrocycle achieves anti-dissolution in electrolytes, prolonging the battery life to 50,000 cycles at 10 A g-1 with 71.6 % capacity retention. This work expands the chemical landscape of multielectron redox-bipolar organics for state-of-the-art ZOBs.

6.
Phys Chem Chem Phys ; 26(6): 5499-5507, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38282470

ABSTRACT

The practical applications of endohedral metallofullerenes (EMFs) are mainly constrained by their low yields. Understanding the formation mechanisms is therefore crucial for developing methods for high-yield and selective synthesis. To address this, a novel force-field parameter set, "CSc.ff", was created using a single-parameter search optimization method, then molecular dynamics simulations of various systems with a carbon-to-scandium atomic ratio of 12.5 were carried out. The simulations were run under a constant atomic number, volume, and energy (NVE) ensemble. The influence of the working gas, helium, as well as temperature gradients on the formation process was examined. Our simulations reveal that the cage growth patterns of Sc-based EMFs (Sc-EMFs) closely resemble those of hollow fullerenes, evolving from free carbon atoms to chains, rings, and, ultimately, to cage-shaped clusters. Importantly, the Sc-EMFs formed in the simulation frequently exhibit structural defects or under-coordinated carbon atoms. Scandium atoms, whether at the periphery or on the surface of these cages, can be incorporated into the cages, forming Sc-EMFs. Helium was found to not only promote the formation of carbon cages but also facilitate the encapsulation of scandium atoms, playing a crucial role in the formation of cluster fullerenes. Moreover, cooling effectively inhibits the uncontrollable growth of the carbon cage and is essential for forming stable, appropriate-sized cages. This study enhances our understanding of the formation of Sc-EMFs and provides valuable insights for developing more efficient synthetic methods.

7.
Angew Chem Int Ed Engl ; 63(3): e202316835, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38010854

ABSTRACT

Compared with Zn2+ storage, non-metallic charge carrier with small hydrated size and light weight shows fast dehydration and diffusion kinetics for Zn-organic batteries. Here we first report NH4 + /H+ co-storage in self-assembled organic superstructures (OSs) by intermolecular interactions of p-benzoquinone (BQ) and 2, 6-diaminoanthraquinone (DQ) polymer through H-bonding and π-π stacking. BQ-DQ OSs exhibit exposed quadruple-active carbonyl motifs and super electron delocalization routes, which are redox-exclusively coupled with high-kinetics NH4 + /H+ but exclude sluggish and rigid Zn2+ ions. A unique 4e- NH4 + /H+ co-coordination mechanism is unravelled, giving BQ-DQ cathode high capacity (299 mAh g-1 at 1 A g-1 ), large-current tolerance (100 A g-1 ) and ultralong life (50,000 cycles). This strategy further boosts the capacity to 358 mAh g-1 by modulating redox-active building units, giving new insights into ultra-fast and stable NH4 + /H+ storage in organic materials for better Zn batteries.

8.
Nanotechnology ; 35(15)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38150723

ABSTRACT

Smart energy storage systems, such as electrochromic supercapacitor (ECSC) integrated technology, have drawn a lot of attention recently, and numerous developments have been made owing to their reliable performance. Developing novel electrode materials for ECSCs that embed two different technologies in a material is an exciting and emerging field of research. To date, the research into ECSC electrode materials has been ongoing with excellent efforts, which need to be systematically reviewed so that they can be used to develop more efficient ECSCs. This mini-review provides a general composition, main evaluation parameters and future perspectives for electrode materials of ECSCs as well as a brief overview of the published reports on ECSCs and performance statistics on the existing literature in this field.

9.
J Colloid Interface Sci ; 658: 856-864, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38157610

ABSTRACT

Understanding the self-stacking interactions in precursors can facilitate the preparation of high-performance carbon materials and promote the commercial application of zinc ion hybrid capacitors (ZIHCs). Here, a π-conjugated molecule mediated pyrolysis strategy is presented to prepare carbon materials. Taking intermolecular force simulation (reduced density gradient plots) as a guide, the relationship between the self-stacking interactions in π-conjugated molecules and the structural parameters of carbon materials can be extrapolated. The resultant self-doped hierarchical porous carbons (NHPCs) derived from 1, 8, 4, 5-naphthalenetetracarboxdiimide with suitable self-stacking interactions empower the highest specific surface areas (2038 m2/g) and surface opening macropores. The NHPCs-based ZIHCs deliver a high capacity of 220 mAh/g, a high energy density of 149.5 Wh kg-1 and a super-stable cycle lifespan with 93.2 % capacity retention after 200, 000 cycles. The excellent electrochemical performance roots in the superior hierarchical porous structure with surface opening macropores, which guarantees the structural stability of carbon cathodes upon repeated rounds. Meanwhile, the heteroatom doping further relieves the kinetics concern of Zn2+ uptake/removal to enhance O-Zn-N binding particularly at high discharge currents. Besides, the proton-assisted Zn2+ dual-ion storage mechanism plays an essential role in the energy storage process. This work demonstrates a facile synthesis method and advances the fundamental understanding of its dual-ion storage mechanism.

10.
Angew Chem Int Ed Engl ; 62(38): e202309446, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37507839

ABSTRACT

Organic small molecules as high-capacity cathodes for Zn-organic batteries have inspired numerous interests, but are trapped by their easy-dissolution in electrolytes. Here we knit ultrastable lock-and-key hydrogen-bonding networks between 2, 7-dinitropyrene-4, 5, 9, 10-tetraone (DNPT) and NH4 + charge carrier. DNPT with octuple-active carbonyl/nitro centers (H-bond acceptor) are redox-exclusively accessible for flexible tetrahedral NH4 + ions (H-bond donator) but exclude larger and rigid Zn2+ , due to a lower activation energy (0.14 vs. 0.31 eV). NH4 + coordinated H-bonding chemistry conquers the stability barrier of DNPT in electrolyte, and gives fast diffusion kinetics of non-metallic charge carrier. A stable two-step 4e- NH4 + coordination with DNPT cathode harvests a high capacity (320 mAh g-1 ), a high-rate capability (50 A g-1 ) and an ultralong life (60,000 cycles). This finding points to a new paradigm for H-bond stabilized organic small molecules to design advanced zinc batteries.

11.
ACS Appl Mater Interfaces ; 15(29): 35380-35390, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37440355

ABSTRACT

Designing zincophilic and stable carbon nanostructures is critical for Zn-ion storage with superior capacitive activity and durability. Here, we report solvent-guided Lewis acid-base self-assembly to customize heterodiatomic carbon nanotubes, triggered by the reaction between iron chloride and α,α'-dichloro-p-xylene. In this strategy, modulating the solvent-precursor interaction through the optimization of solvent formula stimulates differential thermodynamic solubilization, growth kinetics, and self-assembly behaviors of Lewis polymeric chains, thereby accurately tailoring carbon nanoarchitectures to evoke superior Zn-ion storage. Featured with open hollow interiors and porous tubular topologies, the solvent-optimized carbon nanotubes allow low ion-migration barriers to deeply access the built-in zincophilic sites by high-kinetics physical Zn2+/CF3SO3- adsorption and robust chemical Zn2+ redox with pyridine/carbonyl motifs, which maximizes the spatial capacitive charge storage density. Thus, as-designed heterodiatomic carbon nanotube cathodes provide all-round improvement in Zn-ion storage, including a high energy density (140 W h kg-1), a large current activity (100 A g-1), and an exceptional long-term cyclability (100,000 cycles at 50 A g-1). This study provides appealing insights into the solvent-mediated Lewis pair self-assembly design of nanostructured carbons toward advanced Zn-ion energy storage.

12.
Chemistry ; 29(20): e202203973, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36597275

ABSTRACT

Zinc-based energy storage has lately gained popularity due to natural abundance, operational safety, high energy density. Unfortunately, dendrite growth is a common and intractable issue faced in existing zinc-ion batteries to shorten cycle lifespan/stability. This review summarizes recent progress in assembly component (e. g., anode, electrolyte, separator) engineering for dendrite-free zinc-ion batteries. First, diversiform strategies of Zn surface modification and Zn host design are presented to shield the fundamental adverse effect aroused by uneven zinc deposition on the anode. Then, subtle deployments of electrolyte constituents are illustrated to optimize the Zn2+ solvation structure for ultimate dendrite control and Coulombic efficiency elevation in aqueous systems and beyond (e. g., eutectic electrolytes). Furthermore, rational manipulation of advanced separators and the upgrade of zinc metal-free Zn2+ -storage devices are briefly discussed to explore the dendrite-free and high-level Zn2+ -storage. Finally, challenges and perspectives are proposed to offer research inspirations toward safe, high-efficiency and long-lifespan zinc storage.

13.
Angew Chem Int Ed Engl ; 62(13): e202219136, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36695445

ABSTRACT

With fast (de)coordination kinetics, the smallest and the lightest proton stands out as the most ideal charge carrier for aqueous Zn-organic batteries (ZOBs). Hydrogen-bonding networks with rapid Grotthuss proton conduction is particularly suitable for organic cathodes, yet not reported. We report the supramolecular self-assembly of cyanuric acid and 1,3,5-triazine-2,4,6-triamine into organic superstructures through in-plane H-bonds and out-of-plane π-π interaction. The supramolecular superstructures exhibit highly stable lock-and-key H-bonding networks with an ultralow activation energy for protonation (0.09 eV vs. 0.25 eV of zincification). Then, high-kinetics H+ coordination is prior to Zn2+ into protophilic C=O sites via a two-step nine-electron reaction. The assembled ZOBs show high-rate capability (135 mAh g-1 at 150 A g-1 ), high energy density (267 Wh kg-1 cathode ) and ultra-long life (50 000 cycles at 10 A g-1 ), becoming the state-of-the-art ZOBs in comprehensive performances.

14.
Angew Chem Int Ed Engl ; 61(35): e202208821, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-35781762

ABSTRACT

Highly active and stable cathodes are critical for aqueous Zn-organic batteries with high capacity, fast redox kinetics, and long life. We herein report para-, meta-, and ortho-dinitrobenzene (p-, m-, and o-DB) containing two successive two-electron processes, as cathode materials to boost the battery performance. Theoretical and experimental studies reveal that nitro constitutional isomerism is key to zincophilic activity and redox kinetics. p-DB hosted in carbon nanoflower harvests a high capacity of 402 mAh g-1 and a superior stability up to 25 000 cycles at 5 A g-1 , giving a Zn-organic battery with a high energy density of 230 Wh kg-1 . An anionic co-insertion charge storage mechanism is proposed, entailing a two-step (de)coordination of Zn(CF3 SO3 )+ with nitro oxygen. Besides, dinitrobenzene can be electrochemically optimized by side group regulation via implanting electron-withdrawing motifs. This work opens a new window to design multielectron nitroaromatics for Zn-organic batteries.

15.
Article in English | MEDLINE | ID: mdl-35830692

ABSTRACT

Commercial supercapacitors using available carbon products have long been criticized for the under-utilization of their prominent specific surface area (SSA). In terms of carbonaceous electrode optimization, excessive improvement in SSA observed in the gaseous atmosphere might have little effect on the final performance because cracked/inaccessible pore alleys considerably block the direct electrolyte ion transport in a practical electrochemical environment. Herein, mesopore-adjustable hierarchically porous carbon nanosheets are fabricated based on a micelle-size-mediated spatial confinement strategy. In this strategy, hydrophobic trimethylbenzene in different volumes of the solvent can mediate the interfacial assembly with a carbon precursor and porogen segment through π-π bonding and van der Waals interaction to yield micelles with good dispersity and the diameter varying from 119 to 30 nm. With an increasing solvent volume, the corresponding diffusion coefficient (3.1-14.3 m2 s-1) of as-obtained smaller micelles increases, which makes adjacent micelles gather rapidly and then grow along the radial direction of oligomer aggregates to eventually form mesopores on hierarchically porous carbon nanosheets (MNC150-4.5). Thanks to the pore-expansion effect of trimethylbenzene, the mesoporous volume can be adjusted from 28.8 to 40.0%. Mesopores on hierarchically porous carbon nanosheets endow MNC150-4.5 with an enhanced electrochemically active surface area of 819.5 m2 g-1, which gives rise to quick electrolyte accessibility and a correspondingly immediate capacitive response of 338 F g-1 at 0.5 A g-1 in a three-electrode system. Electrolyte transport through pathways within MNC150-4.5 ultimately enables the symmetric cell to deliver a high energy output of 50.4 Wh kg-1 at 625 W kg-1 in a 14 m LiOTF electrolyte and 95% capacitance retention after 100,000 cycles, which show its superior electrochemical performance over representative carbon-based supercapacitors with aqueous electrolytes in recent literature.

16.
Adv Mater ; 33(49): e2104148, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34622501

ABSTRACT

Designing ingenious and stable carbon nanostructures is critical but still challenging for use in energy storage devices with superior electrochemistry kinetics, durable capacitive activity, and high rate survivability. To pursue the objective, a simple self-assembly strategy is developed to access carbon superstructures built of nanoparticle embedded plates. The carbon precursors, 2,4,6-trichloro-1,3,5-triazine and 2,6-diaminoanthraquinone can form porous organic polymer with "protic salt"-type rigid skeleton linked by -NH2 + Cl- - "rivets", which provides the cornerstone for hydrogen-bonding-guided self-assembly of the organic backbone to superstructures by π-π plane stacking. The ameliorative charge density distribution and decreased adsorption energy in as-fabricated carbon superstructures allow the high accessibility of the build-in protophilic sites and efficient ion diffusion with a low energy barrier. Such superstructures thus deliver ultra-stable charge storage and fast proton-coupled kinetics at the structural-chemical defects, contributing to unprecedented lifespan (1 000 000 cycles), high-rate capability (100 A g-1 ) for carbon-based supercapacitors, and an ultrahigh energy density (128 Wh kg-1 ) for Zn-ion hybrid supercapacitors. The self-assembled carbon superstructures significantly improve the all-round electrochemical performances, and hold great promise for efficient energy storage.

17.
J Mol Model ; 27(3): 79, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33560472

ABSTRACT

UV-vis spectra of azobenzene containing carboxyl group were investigated by using density functional theory calculations. The calculation results show that substitutions of carboxyl groups have no obvious effect on the coplanarity of azobenzene. Compared with azobenzene, the wavelength of maximum absorption of P-COOH-trans has obvious red shift and the wavelength of maximum absorption of M-COOH-trans has blue shift in UV-vis spectra. In addition, P-COOH and M-COOH were synthesized, and their structures were determined by Fourier transform infrared(FT-IR),and their UV-vis spectra. The calculation results are in good agreement with the experimental data.

18.
J Hazard Mater ; 403: 123702, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33264889

ABSTRACT

Covalent triazine frameworks (CTFs) as a kind of covalent organic framework (COF) materials show great potential for practical application by virtue of their high stability and facile large-scale synthesis. In this work, we developed three CTFs (MSCTF-1, MSCTF-2, and xSCTF-2) of different pore size decorated with S-groups using different functionalization methods for achieving selective Hg2+ removal from aqueous solutions. The material structures were comprehensively studied by gas adsorption, IR and XPS, etc. Among them, the MSCTF-2 with 24.45% S content showed the highest Hg2+ adsorption capacity of 840.5 mg g‒1, while MSCTF-1 exhibiting much larger distribution coefficient of 1.67 × 108 mL g‒1 renders an exceptionally high efficiency for reducing the concentration of Hg2+ contaminated water to less than 0.03 µg L‒1. Moreover, the MSCTFs show distinct features of: (i) high selectivity toward Hg2+ over various transition metal ions; (ii) high stability over a wide pH range from pH 1 to 12; and (iii) good recyclability with 94% of Hg2+ removal over five consecutive cycles. The Hg2+ adsorption on functionalized CTFs followed pseudo-second-order kinetics and Langmuir isotherm. Our results revealed the material structure-performance relationship that the adsorption capacities depend on the binding site density whereas the distribution coefficient is essential to the removal efficiency.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 228: 117835, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-31780309

ABSTRACT

Hydrogen sulfide shows great importance in various physiological and biochemical processes. The development of fluorescence probes for facile and efficient detection of H2S has attracted increasing attention of researchers. Herein, we synthesized two fluorescence probes based on simple naphthalene structure for detection of H2S. Upon reaction with H2S, the probe DN-DM exhibited a red fluorescence emission with large Stokes shift. The probe showed high sensitivity, pH insensitivity and good selectivity for H2S over other analytes including common biothiols. The detection mechanism was based on the thiolysis of the dinitrophenyl ether moiety, which was confirmed by 1H NMR spectral analysis. The DFT calculation was also performed for a deeper understanding of the photophysical properties. In addition, these probes showed good cell-membrane permeability and could be utilized for detection of H2S in living cells.


Subject(s)
Fluorescent Dyes/chemistry , Hydrogen Sulfide/analysis , Naphthalenes/chemistry , Spectrometry, Fluorescence/methods , Cell Membrane/chemistry , Fluorescence , HeLa Cells , Humans , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Optical Imaging , Permeability
20.
Chem Commun (Camb) ; 55(75): 11219-11222, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31469150

ABSTRACT

N/O self-doped hollow carbon nanorods (HCNs) with micro/mesoporous walls are fabricated based on a new deep-eutectic-solvent that serves as an all-in-one precursor, self-template, and self-dopant agent. The carbon-based supercapacitor using an ionic liquid electrolyte exhibits a high energy density of 116.5 W h kg-1 with excellent long-term cycling performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...