Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
Add more filters










Publication year range
1.
J Nat Med ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775895

ABSTRACT

The practice of Chinese herbal medicines for the treatment of COVID-19 in China played an essential role for the control of mortality rate and reduction of recovery time. The iridoids is one of the main constituents of many heat-clearing and detoxifying Chinese medicines that were largely planted and frequently used in clinical practice. Twenty-three representative high content iridoids from several staple Chinese medicines were obtained and tested by a SARS-CoV-2 pseudo-virus entry-inhibition assay on HEK-293 T/ACE2 cells, a live HCoV-OC43 virus infection assay on HRT-18 cells, and a SARS-CoV-2 3CL protease inhibitory FRET assay followed by molecular docking simulation. The anti-pulmonary inflammation activities were further evaluated on a TNF-α induced inflammation model in A549 cells and preliminary SARs were concluded. The results showed that specnuezhenide (7), cornuside (12), neonuezhenide (15), and picroside III (21) exhibited promising antiviral activities, and neonuezhenide (15) could inhibit 3CL protease with an IC50 of 14.3 µM. Docking computation showed that compound 15 could bind to 3CL protease through a variety of hydrogen bonding and hydrophobic interactions. In the anti-pulmonary inflammation test, cornuside (12), aucubin (16), monotropein (17), and shanzhiside methyl ester (18) could strongly decrease the content of IL-1ß and IL-8 at 10 µM. Compound 17 could also upregulate the expression of the anti-inflammatory cytokine IL-10 significantly. The iridoids exhibited both anti-coronavirus and anti-pulmonary inflammation activities for their significance of existence in Chinese herbal medicines, which also provided a theoretical basis for their potential utilization in the pharmaceutical and food industries.

2.
Food Chem X ; 22: 101249, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38440058

ABSTRACT

Short peptides have become the focus of recent research due to their variable bioactivities, good digestibility and wide existences in food-derived protein hydrolysates. However, due to the high complexity of the samples, identifying short peptides still remains a challenge. In this work, a tool, named PeposX-Exhaust, was developed for short peptide identification. Through validation with known peptides, PeposX-Exhaust identified all the submitted spectra and the accuracy rate reached 75.36%, and the adjusted accuracy rate further reached 98.55% when with top 5 candidates considered. Compared with other tools, the accuracy rate by PeposX-Exhaust was at least 70% higher than two database-search tools and 15% higher than the other two de novo-sequencing tools, respectively. For further application, the numbers of short peptides identified from soybean, walnut, collagen and bonito protein hydrolysates reached 1145, 628, 746 and 681, respectively. This fully demonstrated the superiority of the tool in short peptide identification.

3.
Zhongguo Zhong Yao Za Zhi ; 49(2): 412-419, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403317

ABSTRACT

Thirteen compounds were isolated and identified from 70% ethanol extract of the roots of Gentiana macrophylla by multi-chromatographic methods, including microporous resin, silica gel, and C_(18) reversed-phase column chromatography, as well as HPLC as follows: macrophylloside G(1), macrophylloside D(2), 5-formyl-2,3-dihydroisocoumarin(3),(+)-medicarpin(4),(+)-syringaresinol(5), liquiritigenin(6),(3R)-sativanone(7),(3R)-3'-O-methylviolanone(8), 4,2',4'-trihydroxychalcone(9), latifolin(10), gentioxepine(11), 6α-hydroxycyclonerolidol(12), and ethyl linoleate(13). Compound 1 was a new benzopyran glycoside. Compounds 4, 6-10, 12, and 13 were isolated for the first time from Gentiana plants. Compounds 1 and 2 showed promising hepatoprotective activity against D-GalN-induced AML12 cell damage at the concentration of 10 µmol·L~(-1), and compound 2 exhibited more significant activity than silybin at the same concentration.


Subject(s)
Cardiac Glycosides , Ethers , Gentiana , Gentiana/chemistry , Glycosides/pharmacology , Benzopyrans , Glucosides
4.
J Enzyme Inhib Med Chem ; 39(1): 2296355, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38234133

ABSTRACT

Orthosiphon aristatus is a well-known folkloric medicine and herb for Guangdong soup for the treatment of rheumatism in China. Eight isopimarane-type and migrated pimarane-type diterpenoids (1-8), including a new one with a rarely occurring α,ß-unsaturated diketone C-ring, were isolated from O. aristatus. Their structures were determined by spectroscopic methods and quantum chemical calculations. Furthermore, the most abundant compound, orthosiphol K, was structurally modified by modern synthetic techniques to give seven new derivatives (9-15). The anti-rheumatoid arthritis activity of these diterpenoids were evaluated on a TNF-α induced MH7A human rheumatoid fibroblast-like synoviocyte model. Compound 10 showed the most potent activity among these compounds. Based on their inhibitory effects on the release levels of IL-1ß, the preliminary structure-activity relationships were concluded. Furthermore, western blot analysis revealed that 10 could increase the expression of IκBα and decrease the expression of NF-κB p65, and the expression levels of COX-2 and NLRP3 proteins were consequently down-regulated.


Subject(s)
Arthritis, Rheumatoid , Diterpenes , Orthosiphon , Humans , Orthosiphon/chemistry , Orthosiphon/metabolism , Abietanes , Arthritis, Rheumatoid/drug therapy , Tumor Necrosis Factor-alpha , Diterpenes/pharmacology , Diterpenes/chemistry , NF-kappa B/metabolism
5.
Bioorg Chem ; 142: 106937, 2024 01.
Article in English | MEDLINE | ID: mdl-37913583

ABSTRACT

Gemcitabine (GEM) is a standard chemotherapeutic agent for patients with pancreatic cancer; however, GEM-based chemotherapy has a high rate of toxicity. A combination of GEM and active constituents from natural products may enhance its therapeutic efficacy and reduce its toxicity. This study investigated the synergistic effects of the combination of liriopesides B (LirB) from Liriope spicata var. prolifera and GEM on human pancreatic cancer cells. The results of our study showed that the combination of LirB and GEM synergistically decreased the viability of pancreatic cancer cells. The combination also caused a strong increase in apoptosis and a strong decrease in cell migration and invasion. Furthermore, LirB combined with GEM had potent inhibitory effects on pancreatic cancer stem cells (CSCs). Studies on the mechanisms of action showed that the combination more potently inhibited protein kinase B (Akt) and nuclear factor kappa B (NF-κB), as well as the downstream antiapoptotic molecules B-cell lymphoma 2 (Bcl-2) and survivin than either agent used alone. The results of this study suggest that the combination of LirB with GEM may improve the efficacy of GEM for the treatment of pancreatic cancer.


Subject(s)
Gemcitabine , Pancreatic Neoplasms , Humans , Deoxycytidine/pharmacology , Cell Line, Tumor , Pancreatic Neoplasms/pathology , NF-kappa B/metabolism , Apoptosis , Cell Proliferation
6.
Phytochemistry ; 217: 113920, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37951561

ABSTRACT

Ten lignans, including six previously undescribed phenolic ester glycosyl lignans (1-6), were isolated from a well-known traditional Chinese medicine, Qin-Jiao, which is the dry root of Gentiana macrophylla Pall. (Gentianaceae). Their structures were determined by spectroscopic and chemical methods, especially 2D NMR techniques. Quantum chemical calculations of theoretical ECD spectra allowed the determination of their absolute configurations. Refer to its traditional applications for the treatment of rheumatic arthralgia and hepatopathy, these compounds were evaluated on a TNF-α induced MH7A human synoviocyte inflammation model and a D-GalN induced AML12 hepatocyte injury model. Compounds 1, 2, 5, and 6 significantly reduced the release of proinflammatory cytokine IL-1ß in MH7A cells at 15 µM and they also could strongly protect AML12 cells against D-GalN injury at 30 µM. Flow cytometry and Western blot analysis showed that compound 5 ameliorated D-GalN induced AML12 cell apoptosis by upregulating the expression of anti-apoptotic Bcl-2 protein and down-regulating the expression of pro-apoptotic Bax protein.


Subject(s)
Drugs, Chinese Herbal , Gentiana , Lignans , Humans , Gentiana/chemistry , Lignans/pharmacology , Glucosides/pharmacology , Glucosides/chemistry , Drugs, Chinese Herbal/pharmacology , Inflammation
7.
Molecules ; 28(22)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38005192

ABSTRACT

Tyrosinase is an important rate-limiting enzyme in melanin biosynthesis. To find potential tyrosinase inhibitors with anti-melanogenic activity, a series of indole-thiazolidine-2,4-dione derivatives 5a~5z were synthesized by incorporating indole with thiazolidine-2,4-dione into one compound and assayed for their biological activities. All compounds displayed tyrosinase inhibitory activities and 5w had the highest anti-tyrosinase inhibitory activity with an IC50 value of 11.2 µM. Inhibition kinetics revealed 5w as a mixed-type tyrosinase inhibitor. Fluorescence quenching results indicated that 5w quenched tyrosinase fluorescence in a static process. CD spectra and 3D fluorescence spectra results suggested that the binding of 5w with tyrosinase could change the conformation and microenvironment of tyrosinase. Molecular docking also represented the binding between 5w and tyrosinase. Moreover, 5w could inhibit tyrosinase activity and melanogenesis both in B16F10 cells and the zebrafish model. Therefore, compound 5w could serve as a tyrosinase inhibitor with anti-melanogenic activity.


Subject(s)
Enzyme Inhibitors , Monophenol Monooxygenase , Animals , Molecular Docking Simulation , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Zebrafish/metabolism , Indoles/pharmacology , Melanins
8.
Food Sci Nutr ; 11(11): 7026-7038, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37970412

ABSTRACT

Niudali (Callerya speciosa) is commonly grown in southeastern regions of China and consumed as a food ingredient. Although Niudali root extracts showed various biological activities, the hepatoprotective effects of Niudali root phytochemicals are not fully studied. Herein, we prepared two Niudali root aqueous extracts, namely, c and Niudali polysaccharides-enriched extract (NPE), and identified an alkaloid, (hypaphorine) in NEW. The hepatoprotective effects of NWE, NPE, and hypaphorine were evaluated in an acute liver injury model induced by carbon tetrachloride (CCl4) in mice. Pathohistological examination and blood chemistry assays showed that treatment of NWE, NPE, and hypaphorine alleviated CCl4-induced liver damage by lowering the liver injury score (by 75.51%, 80.01%, and 41.22%) and serum aspartate and alanine transaminases level (by 63.24%, 85.22%, and 49.74% and by 78.73%, 80.08%, and 81.70%), respectively. NWE, NPE, and hypaphorine also reduced CCl4-induced hepatic oxidative stresses in the liver tissue by decreasing the levels of malondialdehyde (by 40.00%, 51.25%, and 28.75%) and reactive oxygen species (by 30.22%, 36.14%, and 33.54%) while increasing the levels of antioxidant enzymes including superoxide dismutase (by 21.36%, 21.64%, and 8.90%), catalase (by 22.13%, 33.33%, and 5.39%), and glutathione (by 84.87%, 90.65%, and 80.53%), respectively. Mechanistic assays showed that NWE, NPE, and hypaphorine alleviated liver damage by mediating inflammatory biomarkers (e.g., pro-inflammatory cytokines) via the signaling pathways of mitogen-activated protein kinases and nuclear factor-κB. Findings from our study extend the understanding of Niudali's hepatoprotective effects, which is useful for its development as a dietary intervention for liver inflammation.

9.
Phytochemistry ; 216: 113887, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37806467

ABSTRACT

Four previously undescribed hirsutinolide-type sesquiterpenoids, cyanolides A-D (1-4), along with twelve known analogues (5-16), were isolated from the aerial parts of Cyanthillium cinereum. Their structures were determined by comprehensive analysis of NMR, HRESIMS, and ECD spectra. Compound 1 is a rarely occurring hirsutinolide-type sesquiterpenoid with 1,4-ether ring ruptured and containing a chlorine atom, and compounds 13-16 were reported from this plant for the first time. All compounds were tested for their inhibiting effects on prostate cancer cells. As a result, compounds 1, 3, and 8-14 exhibited significant anti-prostate cancer activity against PC-3 and LNCaP cells with IC50 values ranging from 2.2 ± 0.4 to 8.5 ± 0.7 µM and 3.0 ± 0.7 to 10.5 ± 1.1 µM, respectively. The preliminary structure-activity relationship was discussed. Further investigation showed that compound 1 induced apoptosis in PC-3 cells.


Subject(s)
Asteraceae , Prostatic Neoplasms , Sesquiterpenes , Male , Humans , Molecular Structure , Asteraceae/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Structure-Activity Relationship , Prostatic Neoplasms/drug therapy
10.
Molecules ; 28(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37764389

ABSTRACT

Four previously undescribed terpenoid glucosides, including one sesquiterpenoid di-glucoside (1), two new iridoid glucosides (2, 3), and a new triterpenoid tri-glucoside (4), were isolated from a 70% ethanol extract of the root of Gentiana macrophylla (Gentianaceae), along with eight known terpenoids. Their structures were determined by spectroscopic techniques, including 1D, 2D NMR, and HRMS (ESI), as well as chemical methods. The absolute configuration of compound 1 was determined by quantum chemical calculation of its theoretical electronic circular dichroism (ECD) spectrum. The sugar moieties of all the new compounds were confirmed to be D-glucose by GC analysis after acid hydrolysis and acetylation. Anti-pulmonary inflammation activity of the iridoids were evaluated on a TNF-α induced inflammation model in A549 cells. Compound 2 could significantly alleviate the release of proinflammatory cytokines IL-1ß and IL-8 and increase the expression of anti-inflammatory cytokine IL-10.


Subject(s)
Gentiana , Pneumonia , Humans , Terpenes/pharmacology , Tumor Necrosis Factor-alpha , Glucosides/pharmacology , A549 Cells , Cytokines , Plant Extracts/pharmacology
11.
Nat Prod Res ; : 1-11, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37599620

ABSTRACT

Two rarely occurring diphenylheptanoid-phenylheptanoid hybrid dimers (1 and 2) and one new oxygenated fatty acid (3), as well as two known fatty acid analogues (4 and 5), were isolated from the 70% EtOH extract of the pollen of Typha angustifolia. Their planar structures were established by interpretation of MS and NMR spectroscopic data, and the absolute configurations of 1 and 2 were determined by Mosher's method and quantum chemical TD-DFT calculations of ECD spectra. An in vitro anti-diabetic evaluation of these isolates revealed that compounds 1 and 2 exhibited promising inhibitory activity against α-glucosidase with IC50 values of 11.85 ± 0.69 and 17.06 ± 3.08 µM, respectively. It is the first report on both diphenylheptanoid constituents and α-glucosidase inhibitors from the title plant, which represents a significant phytochemical progress of this herbal species and may serve as a reference for its future medicinal applications.

12.
Phytochemistry ; 213: 113780, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37379971

ABSTRACT

Six previously undescribed N-acetyldopamine (NADA) trimmer racemates, percicamides A-F (1-6), were isolated from a 70% ethanol extract of Cicadae Periostracum. Subsequent chiral-phase separation afforded six pairs of enantiomers, (+)- and (-)-percicamides A-F (1a/1b-6a/6b). Their structures including absolute configurations were elucidated by combined extensive spectroscopic data and quantum chemical calculations. Compounds 1-6 represent the first examples of NADA trimmers with a cis-relationship of H-7'/H-8' or H-7''/H-8''. Bioassays verified that all isolated compounds showed weak inhibitory effects on nitric oxide production in RAW 264.7 cells.


Subject(s)
Drugs, Chinese Herbal , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine , Drugs, Chinese Herbal/chemistry , Nitric Oxide , Dopamine/pharmacology , Molecular Structure
13.
Molecules ; 28(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37110629

ABSTRACT

Naproxen is widely used for anti-inflammatory treatment but it can lead to serious side effects. To improve the anti-inflammatory activity and safety, a novel naproxen derivative containing cinnamic acid (NDC) was synthesized and used in combination with resveratrol. The results showed that the combination of NDC and resveratrol at different ratios have a synergistic anti-inflammatory efficacy in RAW264.7 macrophage cells. It was indicated that the combination of NDC and resveratrol at a ratio of 2:1 significantly inhibited the expression of carbon monoxide (NO), tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), induced nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2) and reactive oxygen species (ROS) without detectable side effects on cell viability. Further studies revealed that these anti-inflammatory effects were mediated by the activation of nuclear factor kappa-B (NF-κB), mitogen-activated protein kinase (MAPK) and phosphoinositide-3 kinase (PI3K)/protein kinase B (Akt) signaling pathways, respectively. Taken together, these results highlighted the synergistic NDC and resveratrol anti-inflammatory activity that could be further explored as a strategy for the treatment of inflammatory disease with an improved safety profile.


Subject(s)
Mitogen-Activated Protein Kinases , NF-kappa B , Animals , Mice , NF-kappa B/metabolism , Mitogen-Activated Protein Kinases/metabolism , Resveratrol/pharmacology , Naproxen/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Signal Transduction , Anti-Inflammatory Agents/pharmacology , RAW 264.7 Cells , Lipopolysaccharides/pharmacology , Nitric Oxide/metabolism , Cyclooxygenase 2/metabolism
14.
Ultrason Sonochem ; 95: 106383, 2023 May.
Article in English | MEDLINE | ID: mdl-37004413

ABSTRACT

Pericarpium Citri Reticulatae 'Chachiensis' (PCRC), the premium aged pericarps of Pericarpium Citri Reticulatae, is widely used in traditional Chinese medicines with a diversity of promising bioactivity. Herein we report the extraction, characterization and underlying mechanism of anti-metabolic syndrome of an arabinan-rich polysaccharide from PCRC (PCRCP). This polysaccharide was obtained in a 7.0% yield by using ultrasound-assisted extraction under the optimized conditions of 30 mL/g liquid-to-solid ratio, 250 W ultrasound power for 20 min at 90 °C with pH 4.5. The PCRCP with an average molecular weight of 122.0 kDa, is mainly composed of D-galacturonic acid, arabinose and galactose, which may link via 1,4-linked Gal(p)-UA, 1,4-linked Ara(f) and 1,4-linked Gal(p). Supplementation with PCRCP not only effectively alleviated the weight gain, adiposity and hyperglycemia, but also regulated the key metabolic pathways involved in the de novo synthesis and ß-oxidation of fatty acid in high-fat diet (HFD)-fed mice. Furthermore, PCRCP treatment caused a significant normalization in the intestinal barrier and composition of gut microbiota in mice fed by HFD. Notably, PCRCP selectively enriched Lactobacillus johnsonii at the family-genus-species levels, a known commensal bacterium, the level of which was decreased in mice fed by HFD. The depletion of microbiome induced by antibiotics, significantly compromised the effects of anti-metabolic syndrome of PCRCP in mice fed by HFD, demonstrating that the protective phenotype of PCRCP against anti-obesity is dependent on gut microbiota. PCRCP is exploitable as a potential prebiotic for the intervention of obesity and its complications.


Subject(s)
Drugs, Chinese Herbal , Gastrointestinal Microbiome , Mice , Animals , Ultrasonics , Medicine, Chinese Traditional , Obesity/drug therapy , Mice, Inbred C57BL
15.
Chin J Nat Med ; 21(4): 292-297, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37120247

ABSTRACT

Five new flavonoid derivatives, cajavolubones A-E (1-5), along with six known analogues (6-11) were isolated from Cajanus volubilis, and their structures were elucidated by spectroscopic analysis and quantum chemical calculations. Cajavolubones A and B (1 and 2) were identified as two geranylated chalcones. Cajavolubone C (3) was a prenylated flavone, while cajavolubones D and E (4 and 5) were two prenylated isoflavanones. Compounds 3, 8, 9 and 11 displayed cytotoxicity against HCT-116 cancer cell line.


Subject(s)
Cajanus , Chalcones , Flavonoids/pharmacology , Flavonoids/chemistry , Molecular Structure , Chalcones/pharmacology , Chalcones/chemistry
16.
Chin J Nat Med ; 21(4): 298-307, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37120248

ABSTRACT

Five new terpenoids, including two vibsane-type diterpenoids (1, 2) and three iridoid allosides (3-5), together with eight known ones, were isolated from the leaves and twigs of Viburnum odoratissimum var.sessiliflorum. Their planar structures and relative configurations were determined by spectroscopic methods, especially 2D NMR techniques. The sugar moieties of the iridoids were confirmed as ß-D-allose by GC analysis after acid hydrolysis and acetylation. The absolute configurations of neovibsanin Q (1) and dehydrovibsanol B (2) were determined by quantum chemical calculation of their theoretical electronic circular dichroism (ECD) spectra and Rh2(OCOCF3)4-induced ECD analysis. The anti-inflammatory activities of compounds 1, 3, 4, and 5 were evaluated using an LPS-induced RAW264.7 cell model. Compounds 3suppressed the release of NO in a dose-dependent manner, with an IC50 value of 55.64 µmol·L-1. The cytotoxicities of compounds 1-5 on HCT-116 cells were assessed and the results showed that compounds 2 and 3 exhibited moderate inhibitory activities with IC50 values of 13.8 and 12.3 µmol·L-1, respectively.


Subject(s)
Diterpenes , Viburnum , Terpenes/pharmacology , Viburnum/chemistry , Molecular Structure , Diterpenes/chemistry , Plant Leaves/chemistry
17.
Nutrients ; 16(1)2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38201888

ABSTRACT

Diets() rich in fat are a major() cause() of metabolic disease(), and nutritional() food has been widely() used() to counteract the metabolic disorders such() as obesity() and fatty() liver(). The present study investigated the effects of oleuropein-enriched extract() from Jasminum grandiflorum L. flowers (OLE-JGF) in high-fat diet() (HFD)-fed mice and oleic acid() (OA)-treated AML-12 cells. Treatment() of HFD-fed mice with 0.6% OLE-JGF for 8 weeks significantly reduced body and liver() weights, as well as attenuating lipid dysmetabolism and hepatic steatosis. OLE-JGF administration() prominently suppressed the mRNA expressions() of monocyte chemoattractant protein()-1 (MCP-1) and cluster of differentiation 68 (CD68), and it also downregulated acetyl-CoA carboxylase (ACC) and fatty() acid() synthase (FAS) as well as sterol-regulatory-element()-binding protein() (SREBP-1c) in the liver(). Meanwhile, mitochondrial DNA and uncoupling protein() 2 (UCP2) were upregulated along with the increased expression() of mitochondrial biogenic promoters including liver() kinase B1 (LKB1), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear() factor()-erythroid-derived 2-like 2 (Nrf2), and mitochondrial transcription factor() A (Tfam), but did not change AMP-activated protein() kinase (AMPK) in liver(). The lipid droplets were decreased significantly after treatment() with 80 µM oleuropein for 24 h in OA-induced AML-12 cells. Furthermore, oleuropein significantly inhibited ACC mRNA expression() and upregulated LKB1, PGC-1α, and Tfam mRNA levels, as well as increasing the binding level of LKB1 to PGC-1α promoter in OA-induced cells. These findings indicate() that OLE-JGF reduces hepatic lipid deposition in HFD-fed mice, as well as the fact that OA-induced liver() cells may be partly() attributed to upregulation of the LKB1-PGC-1α axis, which mediates hepatic lipogenesis and mitochondrial biogenesis. Our study provides a scientific() basis() for the benefits and potential() use() of the J. grandiflorum flower as a food supplement() for the prevention() and treatment() of metabolic disease().


Subject(s)
Carcinoma, Hepatocellular , Fatty Liver , Iridoid Glucosides , Jasminum , Leukemia, Myeloid, Acute , Liver Neoplasms , Metabolic Diseases , Animals , Mice , Protein Serine-Threonine Kinases , Fatty Liver/drug therapy , AMP-Activated Protein Kinases/genetics , Acetyl-CoA Carboxylase , RNA, Messenger , Plant Extracts/pharmacology , Lipids
18.
Front Chem ; 10: 938851, 2022.
Article in English | MEDLINE | ID: mdl-35910745

ABSTRACT

Two new patchoulene sesquiterpenoid glycosides (1-2), a natural patchoulane-type sesquiterpenoid (3) and a natural cadinene-type sesquiterpenoid (4), were isolated from the aerial parts of Pogostemon cablin (Blanco) Benth., together with eleven known sesquiterpenoids (5-15) and eleven known flavonoids (16-26). Their chemical structures were elucidated on the basis of spectroscopic methods, including NMR, HRESIMS, IR, and CD spectroscopic data analysis, as well as chemical hydrolysis. The isolated compounds 1-13 and 15-26 were tested for inhibitory effects on the proliferation of HepG2 cancer cells. Among them, compounds 17 and 19 displayed anti-proliferative effects against HepG2 cells with IC50 values of 25.59 and 2.30 µM, respectively. Furthermore, the flow cytometry analysis and Western blotting assays revealed that compound 19 significantly induced apoptosis of HepG2 cells by downregulating the ratio of Bcl-2/Bax and upregulating the expression of cleaved caspase-3 and cleaved caspase-9. Therefore, the potential pharmaceutical applications of P. cablin would be applied according to our study findings.

19.
Bioorg Chem ; 128: 106060, 2022 11.
Article in English | MEDLINE | ID: mdl-35926428

ABSTRACT

Fourteen phenolic constituents, notopheninetols A-E (1-5), notoflavinols A and B (6 and 7), and (2R)-5,4'-dihydroxy-7-O-[(E)-3,7-dimethyl-2,6-octadienyl]flavanone (8a), along with 12 known analogues (8b and 9-19) were isolated from the roots and rhizomes of Notopterygium incisum. Compounds 1-4 and 6-8 were seven pairs of enantiomers, and they were separated by chiral HPLC to obtain the optically pure compounds. The structures of the new compounds were elucidated based on detailed analyses of 1D and 2D NMR and HRESIMS data, and the absolute configurations were determined by quantum chemical calculations of the electronic circular dichroism (ECD) spectra, comparison of the experimental ECD data with those reported, and chemical methods. Compounds 1 and 2 possessed a 1-benzyl-2-methyl-indane skeleton, which was unprecedented in natural source. All of the isolated compounds were evaluated for their nitric oxide (NO) inhibitory effects on RAW264.7 cells induced by LPS, and compounds 6a/6b, 7a, 8a/8b, and the hydrogenated products 6'a and 7'a showed moderate inhibitory activities with IC50 values in the range of 6.2-20.6 µM. Moreover, the interactions of these bioactive compounds with inducible nitric oxide synthase (iNOS) were explored by employing molecular docking simulation.


Subject(s)
Apiaceae , Rhizome , Apiaceae/chemistry , Molecular Docking Simulation , Molecular Structure , Nitric Oxide/analysis , Plant Roots/chemistry , Rhizome/chemistry
20.
Phytochemistry ; 203: 113348, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35977600

ABSTRACT

Six pairs of undescribed phenylglycerol benzoate enantiomers, (±)-mollifolines A-F, which can also be categorized into three two-pairs of epimers, were isolated from Cinnamomum mollifolium H. W. Li (Lauraceae). The relative configurations (threo or erythro) of the epimers were determined by conformational searching of the lowest energy conformers and analyses of the relationship between the dihedral angle of H-7'─C-7'─C-8'─H-8' and the 3JH-7', H-8' coupling constant according to the Karplus equation. Furthermore, intramolecular hydrogen bonds were proved to play an important role in stabilizing the lowest conformations by using reduced density gradient (RDG) method for noncovalent interactions. Chiral resolutions of these enantiomer pairs were accomplished by immobilized polysaccharide derivative-based chiral HPLC columns. Absolute configurations of the 12 optically pure isomers were finally determined by quantum chemical time-dependent density functional theory (TDDFT) calculations of their electronic circular dichroism (ECD) spectra.


Subject(s)
Cinnamomum , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine , Benzoates , Circular Dichroism , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...