Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Oncol (Dordr) ; 46(5): 1333-1350, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37099250

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) are noncoding RNAs. Accumulating evidence suggests that circRNAs play a critical role in human biological processes, especially tumorigenesis, and development. However, the exact mechanisms of action of circRNAs in hepatocellular carcinoma (HCC) remain unclear. METHODS: Bioinformatic tools and RT-qPCR were used to identify the role of circDHPR, a circRNA derived from the dihydropteridine reductase (DHPR) locus, in HCC and para-carcinoma tissues. Kaplan-Meier analysis and the Cox proportional hazard model were used to analyze the correlation between circDHPR expression and patient prognosis. Lentiviral vectors were used to establish stable circDHPR-overexpressing cells. In vitro and in vivo studies have shown that tumor proliferation and metastasis are affected by circDHPR. Mechanistic assays, including Western blotting, immunohistochemistry, dual-luciferase reporter assays, fluorescence in situ hybridization, and RNA immunoprecipitation, have demonstrated the molecular mechanism underlying circDHPR. RESULTS: CircDHPR was downregulated in HCC, and low circDHPR expression was associated with poor overall survival and disease-free survival rates. CircDHPR overexpression inhibits tumor growth and metastasis in vitro and in vivo. Further systematic studies revealed that circDHPR binds to miR-3194-5p, an upstream regulator of RASGEF1B. This endogenous competition suppresses the silencing effect of miR-3194-5p. We confirmed that circDHPR overexpression inhibited HCC growth and metastasis by sponging miR-3194-5p to upregulate the expression of RASGEF1B, which is regarded as a suppressor of the Ras/MAPK signaling pathway. CONCLUSIONS: Aberrant circDHPR expression leads to uncontrolled cell proliferation, tumorigenesis, and metastasis. CircDHPR may serve as a biomarker and therapeutic target for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Humans , Carcinoma, Hepatocellular/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Liver Neoplasms/metabolism , Dihydropteridine Reductase/genetics , Dihydropteridine Reductase/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , In Situ Hybridization, Fluorescence , Cell Line, Tumor , Cell Proliferation/genetics , Carcinogenesis/pathology , Gene Expression Regulation, Neoplastic
SELECTION OF CITATIONS
SEARCH DETAIL
...