Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Opt Express ; 30(10): 16931-16937, 2022 May 09.
Article in English | MEDLINE | ID: mdl-36221526

ABSTRACT

A large-capacity, long-distance distributed acoustic sensing (DAS) system without inline optical amplification was proposed and experimentally demonstrated using an ultra-weak fiber Bragg grating (UWFBG) array and coherent detection. The effect of the finite extinction ratio of an acousto-optic modulator and the Stokes signal of stimulated Brillouin scattering (SBS) in UWFBGs on the performance of DAS was simulated and revealed. A high extinction ratio and a balanced input pulsed optical power can improve the capacity and distance of the DAS. The dynamic acoustic signal can be well reconstructed for a serial array of 10828 near-identical UWFBG with a length of 54.14 km. An acoustic signal sensitivity of 189.54 pɛ/√Hz and a signal SNR of 40.01 dB with a spatial resolution of 5 m can be achieved at the far end.

2.
Sensors (Basel) ; 22(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35009841

ABSTRACT

In this paper, we proposed and experimentally demonstrated an opto-mechatronics system to detect the micro-deformation of tracks caused by running trains. The fiber Bragg grating (FBG) array acting as sensing elements has a low peak reflectivity of around -40 dB. The center wavelengths were designed to alternate between 1551 nm and 1553 nm at 25 °C. Based on dual-wavelength, wavelength-division multiplexing (WDM)/time-division multiplexing (TDM) hybrid networking, we adopted optical time-domain reflectometry (OTDR) technology and a wavelength-scanning interrogation method to achieve FBG array signal demodulation. The field experimental results showed that the average wavelength shift of the FBG array caused by the passage of the lightest rail vehicle was -225 pm. Characteristics of the train-track system, such as track occupancy, train length, number of wheels, train speed, direction, and loading can be accurately obtained in real time. This opto-mechatronics system can meet the requirements of 600 mm spatial resolution, long distance, and large capacity for monitoring the train-track system. This method exhibits great potential for applications in large-scale train-track monitoring, which is meaningful for the safe operation of rail transport.

3.
Sensors (Basel) ; 19(9)2019 May 09.
Article in English | MEDLINE | ID: mdl-31075963

ABSTRACT

It is challenging for engineers to timely identify illegal ground intrusions in underground systems such as subways. In order toprevent the catastrophic collapse of subway tunnels from intrusion events, this paper investigated the capability of detecting the ground intrusion of underground structures based on dynamic measurement of distributed fiber optic sensing. For an actual subway tunnel monitored by the ultra-weak fiber optic Bragg grating (FBG)sensing fiber with a spatial resolution of five meters, a simulated experiment of the ground intrusion along the selected path was designed and implemented, in which a hydraulic excavator was chosen to exert intrusion perturbations with different strengths and modes at five selected intrusion sites. For each intrusion place, the distributed vibration responses of sensing fibers mounted on the tunnel wall and the track bed were detected to identify the occurrence and characteristics of the intrusion event simulated by the discrete and continuous pulses of the excavator under two loading postures. By checking the on-site records of critical moments in the intrusion process, the proposed detection approach based on distributed structural vibration responses for the ground intrusion can detect the occurrence of intrusion events, locate the intrusion ground area, and distinguish intrusion strength and typical perturbation modes.

4.
J Colloid Interface Sci ; 324(1-2): 85-91, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18533178

ABSTRACT

Heterocoagulation experiments of kaolinite with solvent-diluted-bitumen were carried out to investigate the effect of hydrolyzable metal cations and citric acid on the liberation of bitumen from kaolinite. The adsorption of Ca(2+) and Mg(2+) on kaolinite, and zeta potentials of kaolinite and bitumen droplets in solutions containing 10(-3)mol/L of Ca(2+), Mg(2+) and Fe(3+) with or without citric acid were also measured. It was found that the heterocoagulation of bitumen with kaolinite was enhanced in the presence of the metal cations from pH 7 to pH 10.5, accompanied by a decrease in the magnitude of the zeta potentials and an increase in the adsorption of the metal cations on kaolinite and possibly on bitumen droplets. The addition of 5 x 10(-4)mol/L citric acid reduced the degree of coagulation from 90% to less than 40% in the presence of 10(-3)mol/L Ca(2+) and Mg(2+) cations at pH approximately 10, and at pH approximately 8 for Fe(3+). It was found that hydrolyzable metal cations enhanced bitumen-kaolinite interactions through electrical double layer compression and specific adsorption of the metal hydrolysis species on the surface of kaolinite. The effect of metal cations was removed by citric acid through formation of metal-citrate complexes and/or the adsorption of citrate anions, which restored the zeta potentials of both kaolinite and bitumen. Therefore, electrostatic attraction or repulsion was responsible for the coagulation or dispersion of kaolinite particles from bitumen droplets in the tested system.


Subject(s)
Hydrocarbons/chemistry , Kaolin/chemistry , Calcium , Iron , Magnesium , Solutions
5.
J Colloid Interface Sci ; 310(2): 489-97, 2007 Jun 15.
Article in English | MEDLINE | ID: mdl-17346736

ABSTRACT

Mutual coagulation tests were conducted between hexadecane droplets (with and without doping with 0.001 mol/L sodium oleate) and micrometer-sized quartz, kaolinite, and illite particles in the presence and absence of multivalent hydrolyzable metal cations. It was observed that while hexadecane did not coagulate with quartz particles in the entire pH range tested (from 3 to 11), the presence of multivalent metal ions significantly increased the mutual coagulation between the hexadecane and quartz. And this only happened when the pH was raised to the level where first-order metal hydroxyl species and/or metal hydroxides were formed. The implications of this mutual coagulation for bitumen liberation from Alberta oil sands are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL