Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Today Bio ; 24: 100920, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38226013

ABSTRACT

Bone defects have become a major cause of disability and death. To overcome the limitations of natural bone implants, including donor shortages and immune rejection risks, bone tissue engineering (BTE) scaffolds have emerged as a promising therapy for bone defects. Despite possessing good biocompatibility, these metal, ceramic and polymer-based scaffolds are still challenged by the harsh conditions in bone defect sites. ROS accumulation, bacterial infection, excessive inflammation, compromised blood supply deficiency and tumor recurrence negatively impact bone tissue cells (BTCs) and hinder the osteointegration of BTE scaffolds. Phenolic compounds, derived from plants and fruits, have gained growing application in treating inflammatory, infectious and aging-related diseases due to their antioxidant ability conferred by phenolic hydroxyl groups. The prevalent interactions between phenols and functional groups also facilitate their utilization in fabricating scaffolds. Consequently, phenols are increasingly incorporated into BTE scaffolds to boost therapeutic efficacy in bone defect. This review demonstrated the effects of phenols on BTCs and bone defect microenvironment, summarized the intrinsic mechanisms, presented the advances in phenol-modified BTE scaffolds and analyzed their potential risks in practical applications. Overall, phenol-modified BTE scaffolds hold great potential for repairing bone defects, offering novel patterns for BTE scaffold construction and advancing traumatological medicine.

2.
Spine (Phila Pa 1976) ; 48(23): E401-E408, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37555796

ABSTRACT

STUDY DESIGN: Experimental analysis of circular RNA in intervertebral disk degeneration (IDD). OBJECTIVE: This study aimed to explore the roles of hsa_circ_0001946 (circ-CDR1as) in mechanical stress-induced nucleus pulposus cell injury in IDD. SUMMARY OF BACKGROUND DATA: Mechanical stress is an important pathogenic factor for IDD. Excessive compression stress leads to nucleus pulposus (NP) cell apoptosis and extracellular matrix (ECM) degradation and accelerated IDD. Circ-CDR1as is associated with various degenerative conditions, but its role in IDD is not clear. Herein, we explored the roles and mechanisms of circ-CDR1as in IDD in vitro. MATERIALS AND METHODS: An in vitro model of IDD was constructed by treating NP cells with 1.0 MPa compression stress. Quantitative real-time polymerase chain reaction assay was used for detecting the expression of circ-CDR1as and miR-432-5p. Immunofluorescent analysis was performed for MMP13 detection. Western blot assay was performed for detecting apoptosis and ECM-related protein expression. Flow cytometry analysis was used for cell apoptosis analysis. The dual-luciferase reporter was used to analyze the interaction between miR-432-5p and circ-CDR1as or SOX9. Differences in means between groups were evaluated using the Student t test or one-way analysis of variance. RESULTS: In compression-treated human NP cells, we found that circ-CDR1as was significantly downregulated. Functional experiments showed that circ-CDR1as overexpression reduced the compression-induced apoptosis and ECM degradation in NP cells. Further research indicated that circ-CDR1as could act as a molecular sponge for miR-432-5p, a miRNA that enhanced compression-induced damage of NP cells by inhibiting the expression of SOX9. The luciferase reporter experiments also showed that the mutual dialogue between circ-CDR1as and miR-432-5p regulated the expression of SOX9. CONCLUSIONS: Circ-CDR1as binds to miR-432-5p and plays a protective role in mitigating compression-induced NP cell apoptosis and ECM degradation by targeting SOX9. Circ-CDR1as may provide a novel therapeutic target for the clinical management of IDD in the future.


Subject(s)
Intervertebral Disc Degeneration , MicroRNAs , Nucleus Pulposus , Humans , Apoptosis , Extracellular Matrix/metabolism , Intervertebral Disc Degeneration/pathology , Luciferases/metabolism , MicroRNAs/genetics , Nucleus Pulposus/metabolism , SOX9 Transcription Factor/genetics , Stress, Mechanical , RNA, Circular/genetics
3.
Acta Biomater ; 167: 1-15, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37330029

ABSTRACT

Low back pain is a major public health concern experienced by 80% of the world's population during their lifetime, which is closely associated with intervertebral disc (IVD) herniation. IVD herniation manifests as the nucleus pulposus (NP) protruding beyond the boundaries of the intervertebral disc due to disruption of the annulus fibrosus (AF). With a deepening understanding of the importance of the AF structure in the pathogenesis of intervertebral disc degeneration, numerous advanced therapeutic strategies for AF based on tissue engineering, cellular regeneration, and gene therapy have emerged. However, there is still no consensus concerning the optimal approach for AF regeneration. In this review, we summarized strategies in the field of AF repair and highlighted ideal cell types and pro-differentiation targeting approaches for AF repair, and discussed the prospects and difficulties of implant systems combining cells and biomaterials to guide future research directions. STATEMENT OF SIGNIFICANCE: Low back pain is a major public health concern experienced by 80% of the world's population during their lifetime, which is closely associated with intervertebral disc (IVD) herniation. However, there is still no consensus concerning the optimal approach for annulus fibrosus (AF) regeneration. In this review, we summarized strategies in the field of AF repair and highlighted ideal cell types and pro-differentiation targeting approaches for AF repair, and discussed the prospects and difficulties of implant systems combining cells and biomaterials to guide future research directions.


Subject(s)
Annulus Fibrosus , Intervertebral Disc Degeneration , Intervertebral Disc Displacement , Intervertebral Disc , Low Back Pain , Humans , Annulus Fibrosus/pathology , Tissue Engineering , Low Back Pain/pathology , Intervertebral Disc/pathology , Intervertebral Disc Degeneration/therapy , Intervertebral Disc Degeneration/pathology , Biocompatible Materials
4.
J Nanobiotechnology ; 21(1): 103, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36944946

ABSTRACT

Osteosarcoma, the most common malignant tumor of the bone, seriously influences people's lives and increases their economic burden. Conventional chemotherapy drugs achieve limited therapeutic effects owing to poor targeting and severe systemic toxicity. Nanocarrier-based drug delivery systems can significantly enhance the utilization efficiency of chemotherapeutic drugs through targeting ligand modifications and reduce the occurrence of systemic adverse effects. A variety of ligand-modified nano-drug delivery systems have been developed for different targeting schemes. Here we review the biological characteristics and the main challenges of current drug therapy of OS, and further elaborate on different targeting schemes and ligand selection for nano-drug delivery systems of osteosarcoma, which may provide new horizons for the development of advanced targeted drug delivery systems in the future.


Subject(s)
Antineoplastic Agents , Bone Neoplasms , Nanoparticles , Osteosarcoma , Humans , Nanoparticle Drug Delivery System , Antineoplastic Agents/therapeutic use , Ligands , Osteosarcoma/drug therapy , Bone Neoplasms/drug therapy , Drug Carriers/therapeutic use
5.
Front Surg ; 9: 836367, 2022.
Article in English | MEDLINE | ID: mdl-36034358

ABSTRACT

Exosomes are widely involved in a variety of physiological and pathological processes. These important roles are also hidden in the physiological processes related to bone. Chondrocytes, osteoblasts, synovial fibroblasts, and bone marrow mesenchymal stem cells produce and secrete exosomes, thereby affecting the biology process of target cells. Furthermore, in the primary pathogenesis of osteoarthrosis induced by steroid hormones, mainly involve glucocorticoid (GC), the exosomes have also widely participated. Therefore, exosomes may also play an important role in glucocorticoid-induced osteoarthrosis and serve as a promising treatment for early intervention of osteoarthrosis in addition to playing a regulatory role in malignant tumors. This review summarizes the previous results on this direction, systematically combs the role and therapeutic potential of exosomes in GC-induced osteoarthrosis, discusses the potential role of exosomes in the treatment and prevention of GC-induced osteoarthrosis, and reveals the current challenges we confronted.

6.
Front Pharmacol ; 13: 842525, 2022.
Article in English | MEDLINE | ID: mdl-35754493

ABSTRACT

Intervertebral disc degeneration (IDD), characterized by conversion of genotypic and phenotypic, is a major etiology of low back pain and disability. In general, this process starts with alteration of metabolic homeostasis leading to ongoing inflammatory process, extracellular matrix degradation and fibrosis, diminished tissue hydration, and impaired structural and mechanical functionality. During the past decades, extensive studies have focused on elucidating the molecular mechanisms of degeneration and shed light on the protective roles of various factors that may have the ability to halt and even reverse the IDD. Mutations of GDF-5 are associated with several human and animal diseases that are characterized by skeletal deformity such as short digits and short limbs. Growth and differentiation factor-5 (GDF-5) has been shown to be a promise biological therapy for IDD. Substantial literature has revealed that GDF-5 can decelerate the progression of IDD on the molecular, cellular, and organ level by altering prolonged imbalance between anabolism and catabolism. GDF family members are the central signaling moleculars in homeostasis of IVD and upregulation of their gene promotes the expression of healthy nucleus pulposus (NP) cell marker genes. In addition, GDF signaling is able to induce mesenchymal stem cells (MSCs) to differentiate into NPCs and mobilize resident cell populations as chemotactic signals. This review will discuss the promising critical role of GDF-5 in maintenance of structure and function of IVDs, and its therapeutic role in IDD endogenous repair.

SELECTION OF CITATIONS
SEARCH DETAIL
...