Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(22): 15270-15280, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38741957

ABSTRACT

Herein, an ultra-low dielectric porous polyimide (PPI) composite film was fabricated by non-solvent induced phase separation (NIPS). High-performance carbon nitride nanosheets grafted by heptadecafluoro-1,1,2,2-tetradecyl-trimethoxysilane (CNNF) were incorporated into the PPI film to enhance thermomechanical and hydrophobic properties. The effects of non-solvent and filler content on the porous morphology, dielectric properties, hydrophobicity and thermomechanical properties of films were investigated. The porous morphology of the CNNF/PPI film changed from the coexistence of pipe-like and spongy structure via H2O, to a tightly-stacked porous structure via MeOH as non-solvent. The dielectric constants ε' of 0.5 wt%-CNNF/PPI(H2O) and 0.5 wt%-CNNF/PPI(MeOH) were 1.56 and 1.69 at 1 MHz, respectively, which were ∼50% lower than that of the original PI film (ε' = 3.33). With the introduction of CNNF, the water contact angle (WCA) of CNNF/PPI(H2O) increased from 66° to 107° and that of CNNF/PPI(MeOH) increased from 92° to 120°. Simultaneously, the storage modulus E' of 2 wt%-CNNF/PPI(MeOH) reached its highest value of ∼881 MPa, which was ∼350 MPa higher than that of PPI(MeOH), together with an enhancement in Tg. This method confirmed a promising prospect for the utilization of porous PI substrates in integrated circuits and microelectronic devices.

2.
Int J Biol Macromol ; 258(Pt 2): 129038, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154724

ABSTRACT

The ionic conductive hydrogel-based sensor exhibits wide applications in wearable electronic devices. However, the strength and ductility trade-off, multimodal requirements, and water-soluble polymer alternatives are significant challenges for the hydrogel-based sensor. Herein, a stretchable and conductive hydrogel is developed with a double network formed by incorporating polyacrylamide and ionic liquid into the konjac glucomannan network. The hydrogel displays significantly enhanced mechanical properties, and good tear/puncture resistance owing to the existence of covalent and non-covalent interactions. In addition, by the introduction of nematic liquid crystal hydroxypropyl cellulose, the hydrogel/cellulose-based strain sensor demonstrates excellent sensing performance in monitoring human motions and writing recognition ability with optical and electrical bimodal sensing response. This work provides new insights to further expand the options of hydrogel-based sensor matrix and to construct bimodal sensors.


Subject(s)
Ionic Liquids , Liquid Crystals , Mannans , Humans , Cellulose , Electric Conductivity , Hydrogels
3.
Int Wound J ; 20(7): 2700-2717, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36896881

ABSTRACT

Keloids are formed due to abnormal hyperplasia of the skin connective tissue. We explored the relationship between N6-methyladenosine (m6A)-related genes and keloids. The transcriptomic datasets (GSE44270 and GSE185309) of keloid and normal skin tissues samples were obtained from the Gene Expression Omnibus database. We constructed the m6A landscape and verified the corresponding genes using immunohistochemistry. We extracted hub genes for unsupervised clustering analysis using protein-protein interaction (PPI) network; gene ontology enrichment analysis was performed to determine the biological processes or functions affected by the differentially expressed genes (DEGs). We performed immune infiltration analysis to determine the relationship between keloids and the immune microenvironment using single-sample gene set enrichment analysis and CIBERSORT. Differential expression of several m6A genes was observed between the two groups; insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) was significantly upregulated in keloid patients. PPI analysis elucidated six genes with significant differences between the two keloid sample groups. Enrichment analysis revealed that the DEGs were mainly enriched in cell division, proliferation, and metabolism. Moreover, significant differences in immunity-related pathways were observed. Therefore, the results of this study will provide a reference for the elucidation of the pathogenesis and therapeutic targets of keloids.


Subject(s)
Keloid , Humans , Keloid/diagnosis , Keloid/genetics , Skin , Computational Biology , Databases, Factual , Gene Expression Profiling
4.
ACS Nano ; 17(5): 4601-4618, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36826229

ABSTRACT

Injudicious or inappropriate use of antibiotics has led to the prevalence of drug-resistant bacteria, posing a huge menace to global health. Here, a self-assembled aggregation-induced emission (AIE) nanosphere (AIE-PEG1000 NPs) that simultaneously possesses near-infrared region II (NIR-II) fluorescence emissive, photothermal, and photodynamic properties is prepared using a multifunctional AIE luminogen (AIE-4COOH). The AIE-PEG1000 NPs were encapsulated with teicoplanin (Tei) and ammonium bicarbonate (AB) into lipid nanovesicles to form a laser-activated "nanobomb" (AIE-Tei@AB NVs) for the multimodal theranostics of drug-resistant bacterial infections. In vivo experiments validate that the "nanobomb" enables high-performance NIR-II fluorescence, infrared thermal, and ultrasound (AB decomposition during the photothermal process to produce numerous CO2/NH3 bubbles, which is an efficient ultrasound contrast agent) imaging of multidrug-resistant bacteria-infected foci after intravenous administration of AIE-Tei@AB NVs followed by 660 nm laser stimulation. The highly efficient photothermal and photodynamic features of AIE-Tei@AB NVs, combined with the excellent pharmacological property of rapidly released Tei during bubble generation and NV disintegration, collectively promote broad-spectrum eradication of three clinically isolated multidrug-resistant bacteria strains and rapid healing of infected wounds. This multimodal imaging-guided synergistic therapeutic strategy can be extended for the theranostics of superbugs.


Subject(s)
Bacterial Infections , Nanoparticles , Nanospheres , Photochemotherapy , Humans , Light , Diagnostic Imaging , Bacterial Infections/diagnostic imaging , Bacterial Infections/drug therapy , Theranostic Nanomedicine/methods , Nanoparticles/therapeutic use
5.
ACS Omega ; 8(51): 49302-49310, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38162770

ABSTRACT

Silicon, an attractive anode material, suffers fast capacity fading due to the electrical isolation from massive volumetric expansion upon cycling. However, it holds a high theoretical capacity and low operation voltage in its practical application. In this study, a new water-based binder, MXene clay/hollow core-shell acrylate composite, was synthesized through an in situ emulsion polymerization technique to alleviate the fast capacity fading of the silicon anode efficiently. The efficient introduction of conductive MXene clay and the hollow core-shell structure, favorable to electron and ion transport in silicon-based electrodes, gives a novel conceptual design of the binder material. Such a strategy could alleviate electrical isolation after cycling and promises better electrochemical performance of the high-capacity anodes. The effect of the MXene introduction and hollow core-shell on the binder performance is thoroughly investigated using various characterization tools by comparison with no MXene-containing, core-shell acrylate, and commercial styrene-butadiene latex binders. Consequently, the silicon-based electrode containing the MXene clay/hollow core-shell acrylate binder exhibits a high capacity retention of 1351 mAh g-1 at 0.5C after 100 cycles and good rate capability of over 1100 mAh g-1 at 5C.

6.
Front Surg ; 9: 1029991, 2022.
Article in English | MEDLINE | ID: mdl-36268206

ABSTRACT

Introduction: Skin cancer is one of the most common types of cancer. An accessible tool to the public can help screening for malign lesion. We aimed to develop a deep learning model to classify skin lesion using clinical images and meta information collected from smartphones. Methods: A deep neural network was developed with two encoders for extracting information from image data and metadata. A multimodal fusion module with intra-modality self-attention and inter-modality cross-attention was proposed to effectively combine image features and meta features. The model was trained on tested on a public dataset and compared with other state-of-the-art methods using five-fold cross-validation. Results: Including metadata is shown to significantly improve a model's performance. Our model outperformed other metadata fusion methods in terms of accuracy, balanced accuracy and area under the receiver-operating characteristic curve, with an averaged value of 0.768±0.022, 0.775±0.022 and 0.947±0.007. Conclusion: A deep learning model using smartphone collected images and metadata for skin lesion diagnosis was successfully developed. The proposed model showed promising performance and could be a potential tool for skin cancer screening.

7.
Front Surg ; 9: 1030288, 2022.
Article in English | MEDLINE | ID: mdl-36248361

ABSTRACT

Chronic wound healing remains a challenging medical problem affecting society, which urgently requires anatomical and functional solutions. Adipose-derived stem cells (ADSCs), mesenchymal stem cells with self-renewal and multiple differentiation ability, play essential roles in wound healing and tissue regeneration. The exosomes from ADSCs (ADSC-EXOs) are extracellular vesicles that are essential for communication between cells. ADSC-EXOs release various bioactive molecules and subsequently restore tissue homeostasis and accelerate wound healing, by promoting various stages of wound repair, including regulating the inflammatory response, promoting wound angiogenesis, accelerating cell proliferation, and modulating wound remodeling. Compared with ADSCs, ADSC-EXOs have the advantages of avoiding ethical issues, being easily stored, and having high stability. In this review, a literature search of PubMed, Medline, and Google Scholar was performed for articles before August 1, 2022 focusing on exosomes from ADSCs, chronic wound repair, and therapeutic potential. This review aimed to provide new therapeutic strategies to help investigators explore how ADSC-EXOs regulate intercellular communication in chronic wounds.

8.
Polymers (Basel) ; 14(5)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35267789

ABSTRACT

Herein, an effective technique of curing reaction-induced phase separation (CRIPS) was used to construct a reduced graphene oxide (RGO) network in the immiscible diglycidyl ether of the bisphenol A/polyetherimide (DGEBA/PEI) polyblend system. The unique chemical reduction of RGO facilitated the reduction of oxygenated groups and simultaneously appended amino groups that stimulate the curing process. The selective interfacial localization of RGO was predicted numerically by the harmonic and geometric mean technique and further confirmed by field emission transmission electron microscopy (FETEM) analysis. Due to interfacial localization, the electrical conductivity was increased to 366 S/m with 3 wt.% RGO reinforcement. The thermomechanical properties of nanocomposites were determined by dynamic mechanical analysis (DMA). The storage modulus of 3 wt.% RGO-reinforced polyblend exhibited an improvement of ~15%, and glass transition temperature (Tg) was 10.1 °C higher over neat DGEBA. Furthermore, the total shielding effectiveness (SET) was increased to 25.8 dB in the X-band region, with only 3 wt.% RGO, which represents ~99.9% shielding efficiency. These phase separation-controlled nanocomposites with selective localization of electrically conductive nanofiller at a low concentration will extend the applicability of polyblends to multifunctional structural nanocomposite applications.

9.
Exp Ther Med ; 21(5): 425, 2021 May.
Article in English | MEDLINE | ID: mdl-33747164

ABSTRACT

The incidence of diabetic encephalopathy is increasing as the population ages. Evidence suggests that formation and accumulation of advanced glycation end products (AGEs) plays a pivotal role in disease progression, but limited research has been carried out in this area. A previous study demonstrated that Kuwanon G (KWG) had significant anti-oxidative stress and anti-inflammatory properties. As AGEs are oxidative products and inflammation is involved in their generation it is hypothesized that KWG may have effects against AGE-induced neuronal damage. In the present study, mouse hippocampal neuronal cell line HT22 was used. KWG was shown to significantly inhibit AGE-induced cell apoptosis in comparison with a control treatment, as determined by both MTT and flow cytometry. Compared with the AGEs group, expression of pro-apoptotic protein Bax was reduced and expression of anti-apoptotic protein Bcl-2 was increased in the AGEs + KWG group. Both intracellular and extracellular levels of acetylcholine and choline acetyltransferase were significantly elevated after KWG administration in comparison with controls whilethe level of acetylcholinesterase decreased. These changes in protein expression were accompanied by increased levels of superoxide dismutase and glutathione peroxidase synthesis and reduced production of malondialdehyde and reactive oxygen species. Intracellular signaling pathway protein levels were determined by western blot and immunocytochemistry. KWG administration was found to prevent AGE-induced changes to the phosphorylation levels of Akt, IκB-α, glycogen synthase kinase 3 (GSK3)-α and ß, p38 MAPK and NF-κB p65 suggesting a potential neuroprotective effect of KWG against AGE-induced damage was via the PI3K/Akt/GSK3αß signaling pathway. The findings of the present study suggest that KWG may be a potential treatment for diabetic encephalopathy.

10.
Nanomaterials (Basel) ; 11(1)2021 Jan 16.
Article in English | MEDLINE | ID: mdl-33467155

ABSTRACT

Herein, a feasible and effective approach is developed to build an electrically conductive and double percolation network-like structure via the incorporation of highly reduced graphene oxide (HRGO) into a polymer blend of diglycidyl ether of bisphenol A/polyetherimide (DGEBA/PEI). With the assistance of the curing reaction-induced phase separation (CRIPS) technique, an interconnected network of HRGO is formed in the phase-separated structure of the DGEBA/PEI polymer blend due to selective localization behavior. In this study, HRGO was prepared from a unique chemical reduction technique. The DGEBA/PEI/HRGO nanocomposite was analyzed in terms of phase structure by content of PEI and low weight fractions of HRGO (0.5 wt.%). The HRGO delivered a high electrical conductivity in DGEBA/PEI polyblends, wherein the value increased from 5.03 × 10-16 S/m to 5.88 S/m at a low content of HRGO (0.5 wt.%). Furthermore, the HRGO accelerated the curing reaction process of CRIPS due to its amino group. Finally, dynamic mechanical analyses (DMA) were performed to understand the CRIPS phenomenon and selective localization of HRGO reinforcement. The storage modulus increased monotonically from 1536 MPa to 1660 MPa for the 25 phr (parts per hundred in the DGEBA) PEI polyblend and reached 1915 MPa with 0.5 wt.% HRGO reinforcement. These simultaneous improvements in electrical conductivity and dynamic mechanical properties clearly demonstrate the potential of this conductive polyblend for various engineering applications.

11.
RSC Adv ; 11(60): 37830-37841, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-35498113

ABSTRACT

A tertiary component with higher molecular weight of epoxy terminated polysiloxane (DMS-E11) was incorporated into the diglycidyl ether of bisphenol-A (DGEBA)/thermoplastic polyetherimide (PEI) blends. In this ternary DGEBA/PEI/DMS-E11 system, 25 or 30 wt% PEI and no more than 20 wt% DMS-E11 were used to ensure the formation of a continuous PEI-rich phase via reaction induced phase separation for optimum mechanical properties of blends. The results of morphology monitoring by OM and TRLS indicated that the addition of DMS-E11 could accelerate phase separation of DGEBA/PEI. Obvious differences were observed by SEM/EDS in the final morphologies of the blends. DMS-E11 localized in the PEI-rich phase continuously while it separated with DGEBA into spherical particles in the DGEBA-rich phase. DMA measurements found that the storage modulus and T g decreased with DMS-E11 content but were compensated partly by the presence of PEI. The results of tensile tests confirmed the synergistic strengthening for epoxy resin from PEI and DMS-E11.

12.
Int Immunopharmacol ; 75: 105832, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31473434

ABSTRACT

We recently found that Sodium butyrate (NaB) possesses anti-inflammatory effects in diabetic nephropathy (DN) mouse model and in high-glucose induced mouse glomerular mesangial cells. Pyroptosis is a programmed cell death accompanied with the release of pro-inflammatory factors. Gasdermin D (GSDMD) is a novel discovered pivotal executive protein of pyroptosis, which can be cleaved by inflammatory caspases. The aim of our study is to verify if NaB have some effects against high-glucose induces pyroptosis in renal Glomerular endothelial cells (GECs). For this aim, human GECs were cultured and exposed to high-glucose. Exogenous NaB, caspase 1 inhibitor Ac-YVAD-CMK (A-Y-C) or knockdown GSDMD by siRNA were used. We found high glucose could increase Propidium Iodide (PI) positive cells and elevate release of lactate dehydrogenase (LDH), Interleukin 1 beta (IL-1ß) and Interleukin 18 (IL-18); protein levels of GSDMD, GSDMD N-terminal domain (GSDMD-N) and cleaved-caspase-1 were also elevated. Effect of NaB on LDH release and PI positive cells was further enhanced by inhibiting caspase 1-GSDMD. In addition, high glucose-induced nuclear factor kappa-B (NF-κB)/NF-κB inhibitor α (IκB-α) signaling pathway was reversed by NaB or A-Y-C administration. In conclusion, NaB could ameliorate high-glucose induced GECs via caspase1-GSDMD canonical pyroptosis pathway; and NF-κB/IκB-α signaling pathway was involved in it.


Subject(s)
Butyric Acid/pharmacology , Endothelial Cells/drug effects , Glucose/adverse effects , Intracellular Signaling Peptides and Proteins/metabolism , Kidney Glomerulus/cytology , Phosphate-Binding Proteins/metabolism , Pyroptosis/drug effects , Caspase 1/metabolism , Cell Survival/drug effects , Cells, Cultured , Endothelial Cells/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Phosphate-Binding Proteins/genetics , RNA, Small Interfering/genetics
13.
R Soc Open Sci ; 6(7): 190141, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31417720

ABSTRACT

Magnetic nanospheres are versatile candidates for both fundamental and practical applications. Before they are applied in more complicated fields, their surface must be modified by several functionalities. However, the surface modification can be affected by the magnetic nanoparticles (MNP) embedded in the polymer matrix. Herein, the synthesis of poly(acrylic acid) coated magnetic nanospheres via a multiple polymerization route is described. During the synthesis process, seed emulsion polymerization was applied to redistribute the MNP in the polymer matrix, and the relationship between the structure of magnetic nanospheres and the thickness of the grafted poly(acrylic acid) layer was investigated. The development of size, morphology and magnetic properties of the nanospheres were characterized by transmission electron microscopy, dynamic light scattering, thermogravimetric analysis, X-ray diffraction and vibrating sample magnetometry. This work would pave the way to design and preparation of new structure of functional magnetic nanospheres with precise surface modification.

14.
J Agric Food Chem ; 67(27): 7694-7705, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31250637

ABSTRACT

Liver plays a central role in modulating blood glucose level. Our most recent findings suggested that supplementation with microbiota metabolite sodium butyrate (NaB) could ameliorate progression of type 2 diabetes mellitus (T2DM) and decrease blood HbA1c in db/db mice. To further investigate the role of butyrate in homeostasis of blood glucose and glycogen metabolism, we carried out the present study. In db/db mice, we found significant hypertrophy and steatosis in hepatic lobules accompanied by reduced glycogen storage, and expression of GPR43 was significantly decreased by 59.38 ± 3.33%; NaB administration significantly increased NaB receptor G-protein coupled receptor 43 (GPR43) level and increased glycogen storage in both mice and HepG2 cells. Glucose transporter 2 (GLUT2) and sodium-glucose cotransporter 1 (SGLT1) on cell membrane were upregulated by NaB. The activation of intracellular signaling Protein kinase B (PKB), also known as AKT, was inhibited while glycogen synthase kinase 3 (GSK3) was activated by NaB in both in vivo and in vitro studies. The present study demonstrated that microbiota metabolite NaB possessed beneficial effects on preserving blood glucose homeostasis by promoting glycogen metabolism in liver cells, and the GPR43-AKT-GSK3 signaling pathway should contribute to this effect.


Subject(s)
Butyric Acid/administration & dosage , Diabetes Mellitus, Type 2/metabolism , Liver Glycogen/metabolism , Animals , Blood Glucose/analysis , Butyric Acid/metabolism , Fluorescent Antibody Technique , Gastrointestinal Microbiome/physiology , Glucose Transporter Type 2/analysis , Glycated Hemoglobin/analysis , Glycogen Synthase Kinase 3/metabolism , Hep G2 Cells , Homeostasis/drug effects , Humans , Liver/chemistry , Liver/metabolism , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-akt/metabolism , Receptors, G-Protein-Coupled/analysis , Signal Transduction/drug effects , Sodium-Glucose Transporter 1/analysis
15.
J Endocrinol ; 238(3): 231-244, 2018 09.
Article in English | MEDLINE | ID: mdl-29941502

ABSTRACT

Endotoxemia has been recognized to be closely accompanied with type 2 diabetes mellitus (T2DM) and is responsible for many diabetic complications. Recent study suggests the potential role of butyrate, a short-chain fatty acid (SCFA) from microbiota metabolite, on T2DM. Gut-leak is a key event in diabetic-endotoxemia. To investigate if butyrate could ameliorate diabetic-endotoxemia, both in vivo and in vitro experiments were carried out in the present study. The effect of butyrate supplementation on blood HbA1c and inflammatory cytokines were determined in db/db mice; gut barrier integrity and expression of tight junction proteins were investigated both in vivo and in vitro Oral butyrate administration significantly decreased blood HbA1c, inflammatory cytokines and LPS in db/db mice; inflammatory cell infiltration was reduced, and gut integrity and intercellular adhesion molecules were increased as detected by HE staining, immunohistochemistry and Western blot. By gut microbiota assay, ratio of Firmicutes:Bacteroidetes for gut microbiota was reduced by butyrate. In Caco-2 cells, butyrate significantly promoted cell proliferation, decreased inflammatory cytokines' secretion, enhanced cell anti-oxidative stress ability and preserved the epithelial monocellular integrity, which was damaged by LPS. The present findings demonstrated that butyrate supplementation could ameliorate diabetic-endotoxemia in db/db mice via restoring composition of gut microbiota and preserving gut epithelial barrier integrity.


Subject(s)
Butyric Acid/administration & dosage , Diabetes Mellitus, Experimental/drug therapy , Inflammation/prevention & control , Animals , Caco-2 Cells , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Drug Therapy, Combination , Gastrointestinal Microbiome/drug effects , Humans , Inflammation/etiology , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Intestinal Mucosa/physiology , Male , Metformin/administration & dosage , Mice , Mice, Inbred C57BL
16.
Dalton Trans ; 46(28): 9172-9179, 2017 Jul 18.
Article in English | MEDLINE | ID: mdl-28675206

ABSTRACT

In this work, N-doped carbon microtubes have been synthesized using MoO3 microrods as the sacrificial template. Then, the Fe3O4 nanoparticles were integrated into N-doped carbon microtubes to obtain triple-walled Fe3O4@N-doped carbon@Fe3O4 microtubes via a high temperature decomposition process. Due to the coordination ability of nitrogen and the unique structures of the N-doped carbon microtubes, the Fe3O4 nanoparticles were closely attached to both the external and internal surfaces of the N-doped carbon microtubes and thus, assured a relatively good response to an external magnetic field. All these features make the nanocomposites well fitted for adsorption, catalysis, energy storage etc. Moreover, the N-doped carbon microtubes can be used as versatile templates to synthesize other triple-walled composites M@N-doped carbon@M microtubes (such as M = Cu(Cu2O), MnO2, MoS2), which greatly widens the applications of N-doped carbon microtubes.

17.
Dalton Trans ; 45(3): 922-7, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26678096

ABSTRACT

This study reports the fabrication of magnetic copper silicate hierarchical hollow nanotubes, which are featured by a tailored complex wall structure and high surface area. Moreover, they exhibit excellent performance as an easily recycled adsorbent for protein separation. Particularly, this strategy can be extended as a general method to prepare other magnetic metal silicate hollow nanotubes.


Subject(s)
Copper/chemistry , Hemoglobins/isolation & purification , Magnetite Nanoparticles/chemistry , Nanotubes/chemistry , Silicates/chemistry , Adsorption , Hemoglobins/chemistry , Humans , Magnetic Phenomena , Porosity , Silicates/chemical synthesis , Surface Properties
18.
Dalton Trans ; 44(39): 17020-5, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26383705

ABSTRACT

Here we reported a facile method to synthesize multifunctional nanocables with a tunable chemical composition. Through the in situ templating method, polydopamine could be directly coated onto the magnetic silver nanowires to form Ag NW/Fe3O4@PDA nanocables. Then, Au(Ag)/AgCl/Fe3O4@PDA@Au was elaborately fabricated by utilizing Ag NWs/Fe3O4@PDA as a template by means of spatially confined galvanic replacement and reduction among Ag NWs, PDA and HAuCl4. These multifunctional nanotubes exhibited excellent photocatalytic activity in the presence of visible light.

19.
Dalton Trans ; 44(17): 7803-10, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25815705

ABSTRACT

In this work, we report a large scale synthetic procedure that allows attachment of magnetite nanoparticles onto Ag NWs in situ, which was conducted in a triethylene glycol (TREG) solution with iron acetylacetonate and Ag NWs as starting materials. The as-prepared Ag NW/Fe3O4 NP composites are well characterized by SEM, TEM, XRD, XPS, FT-IR, and VSM techniques. It was found that the mass ratio of iron acetylacetonate to Ag NWs plays a crucial role in controlling the amount of magnetite nanoparticles decorated on the Ag NWs. The resulting Ag NW/Fe3O4 NP composites exhibit superparamagnetic properties at room temperature, and can be well dispersed in aqueous and organic solutions, which is greatly beneficial for their application and functionality. Thus, the as-prepared magnetic silver nanowires show good catalytic activity, using the catalytic reduction of methylene blue (MB) as a model reaction. Furthermore, the Ag NW/Fe3O4 NP composites can be functionalized with polydopamine (Pdop), resorcinol-formaldehyde resin (PFR), and SiO2, respectively, in aqueous/ethanol solution. Meanwhile they can also be coated with polyphosphazene (PZS) in organic solution, resulting in a unique nanocable with well-defined core shell structures. Besides, taking Ag NW/Fe3O4@SiO2 as an example, a hollow magnetic silica nanotube can be obtained with the use of Ag NWs as physical templates and a solution of ammonium and H2O2. These can greatly improve the application of the Ag NW/Fe3O4 NP composites. The as-synthesized above nanocomposites have high potential for applications in the fields of polymers, wastewater treatment, sensors, and biomaterials.

20.
Chemistry ; 13(10): 2920-8, 2007.
Article in English | MEDLINE | ID: mdl-17183596

ABSTRACT

This paper describes the in situ preparation of fibrils in epoxy networks in which the fibril-like structures are cured polymerizable rod-coil oligomers. The epoxy-terminated alpha,omega-modified PEO oligomers, which are ABA rod-coil-rod oligomers with a poly(ethylene oxide) coil unit and two aromatic azomethine liquid-crystalline rod units, were synthesized and then further blended with an epoxy precursor. Uniform nanoscale columnar structures were observed in the neat rod-coil oligomers as well as in the crosslinked liquid-crystalline state. During the curing of the blends, the supramolecular nanoscale columnar structures of the rod-coil oligomers are transformed into polymeric fibrils where the epoxy functional end groups have co-reacted with epoxy precursors to form a crosslinked network.

SELECTION OF CITATIONS
SEARCH DETAIL
...