Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Acta Pharmacol Sin ; 39(9): 1513-1521, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30150789

ABSTRACT

SND p102 was first described as a transcriptional co-activator, and subsequently determined to be a co-regulator of Pim-1, STAT6 and STAT5. We previously reported that SND p102 expression was increased in high glucose-treated mesangial cells (MCs) and plays a role in the extracellular matrix (ECM) accumulation of MCs by regulating the activation of RAS. In this study, we further examined the roles of SND p102 in diabetic nephropathy (DN)-induced glomerulosclerosis. Rats were injected with STZ (50 mg/kg, ip) to induce diabetes. MCs or isolated glomeruli were cultured in normal glucose (NG, 5.5 mmol/L)- or high glucose (HG, 25 mmol/L)-containing DMEM. We found that SND p102 expression was significantly increased in the diabetic kidneys, as well as in HG-treated isolated glomeruli and MCs. In addition, HG treatment induced significant fibrotic changes in MCs evidenced by enhanced protein expression of TGF-ß, fbronectin and collagen IV, and significantly increased the proliferation of MCs. We further revealed that overexpression of SND p102 significantly increased the protein expression of angiotensin II (Ang II) type 1 receptor (AT1R) in MCs by increasing its mRNA levels via directly targeting the AT1R 3'-UTR, which resulted in activation of the ERK/Smad3 signaling and subsequently promoted the up-regulation of fbronectin, collagen IV, and TGF-ß in MCs, as well as the cell proliferation. These results demonstrate that SND p102 is a key regulator of AT1R-mediating ECM synthesis and cell proliferation in MCs. Thus, small molecule inhibitors of SND p102 may be a novel therapeutic strategy for DN.


Subject(s)
Cell Proliferation/physiology , Diabetic Nephropathies/physiopathology , Extracellular Matrix/metabolism , Kidney/physiopathology , Mesangial Cells/physiology , Nuclear Proteins/metabolism , Animals , Collagen Type IV/metabolism , Diabetes Mellitus, Experimental/complications , Diabetic Nephropathies/etiology , Down-Regulation , Endonucleases , Extracellular Signal-Regulated MAP Kinases/metabolism , Fibronectins/metabolism , Fibrosis/physiopathology , Gene Knockdown Techniques , HEK293 Cells , Humans , MAP Kinase Signaling System/physiology , Male , Nuclear Proteins/genetics , Rats, Sprague-Dawley , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/metabolism , Smad3 Protein/metabolism , Transforming Growth Factor beta/metabolism , Up-Regulation
2.
Acta Pharmacol Sin ; 37(5): 637-44, 2016 May.
Article in English | MEDLINE | ID: mdl-27041464

ABSTRACT

AIM: To investigate the effects of ROS scavenger N-acetylcysteine (NAC) on angiotensin II (Ang II)-mediated renal fibrosis in vivo and in vitro. METHODS: Mice were subjected to unilateral ureteral obstruction (UUO), and then treated with vehicle or NAC (250 mg/kg, ip) for 7 days. Histological changes of the obstructed kidneys were observed with Masson's trichrome staining. ROS levels were detected with DHE staining. The expression of relevant proteins in the obstructed kidneys was assessed using Western blotting assays. Cultured rat renal fibroblast NRK-49F cells were used for in vitro experiments. RESULTS: In the obstructed kidneys, Ang II levels were significantly elevated, and collagen I was accumulated in the interstitial spaces. Furthermore, ROS production and the expression of p47 (a key subunit of NADPH oxidase complexes) were increased in a time-dependent manner; the expression of fibronectin, α-SMA and TGF-ß were upregulated. Administration of NAC significantly alleviated the fibrotic responses in the obstructed kidneys. In cultured NRK-49F cells, treatment with Ang II (0.001-10 µmol/L) increased the expression of fibronectin, collagen I, α-SMA and TGF-ß in dose-dependent and time-dependent manners. Ang II also increased ROS production and the phosphorylation of Smad3. Pretreatment with NAC (5 µmol/L) blocked Ang II-induced oxidative stress and ECM production in the cells. CONCLUSION: In mouse obstructed kidneys, the fibrotic responses result from Ang II upregulation can be alleviated by the ROS scavenger N-acetylcysteine.


Subject(s)
Acetylcysteine/therapeutic use , Angiotensin II/metabolism , Antioxidants/therapeutic use , Kidney Diseases/drug therapy , Ureteral Obstruction/drug therapy , Acetylcysteine/pharmacology , Angiotensin II/pharmacology , Animals , Antioxidants/pharmacology , Cell Line , Fibroblasts/drug effects , Fibroblasts/pathology , Fibrosis/drug therapy , Fibrosis/etiology , Fibrosis/pathology , Kidney/drug effects , Kidney/pathology , Kidney Diseases/etiology , Kidney Diseases/pathology , Male , Mice, Inbred C57BL , Oxidative Stress , Reactive Oxygen Species/metabolism , Renin-Angiotensin System/drug effects , Ureteral Obstruction/complications , Ureteral Obstruction/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...