Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mil Med Res ; 11(1): 33, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816888

ABSTRACT

Orthopedic conditions have emerged as global health concerns, impacting approximately 1.7 billion individuals worldwide. However, the limited understanding of the underlying pathological processes at the cellular and molecular level has hindered the development of comprehensive treatment options for these disorders. The advent of single-cell RNA sequencing (scRNA-seq) technology has revolutionized biomedical research by enabling detailed examination of cellular and molecular diversity. Nevertheless, investigating mechanisms at the single-cell level in highly mineralized skeletal tissue poses technical challenges. In this comprehensive review, we present a streamlined approach to obtaining high-quality single cells from skeletal tissue and provide an overview of existing scRNA-seq technologies employed in skeletal studies along with practical bioinformatic analysis pipelines. By utilizing these methodologies, crucial insights into the developmental dynamics, maintenance of homeostasis, and pathological processes involved in spine, joint, bone, muscle, and tendon disorders have been uncovered. Specifically focusing on the joint diseases of degenerative disc disease, osteoarthritis, and rheumatoid arthritis using scRNA-seq has provided novel insights and a more nuanced comprehension. These findings have paved the way for discovering novel therapeutic targets that offer potential benefits to patients suffering from diverse skeletal disorders.


Subject(s)
Sequence Analysis, RNA , Single-Cell Analysis , Humans , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Bone Diseases/therapy , Bone Diseases/physiopathology , Bone and Bones , Computational Biology/methods
2.
Heliyon ; 9(2): e13730, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36852063

ABSTRACT

The failure mode of cement-augmented pedicle screw (CAPS) was different from common pedicle screw. No biomechanical study of this failure mode named as "reversed windshield-wiper effect" was reported. To investigate the mechanisms underlying this failure mode, a series of finite element models of CAPS and PS were modified on L4 osseous model. Nine models were created according to the cement volume at 0.5 mL interval (range: 1-5 mL). Pullout load and cranio-caudal loads were applied on the screws. Stress and instantaneous rotation center (IRC) of the vertebra were observed. Under cranio-caudal load, the stress concentrated on the screw tip and pedicle region. The maximal stress (MS) at the screw tip region was +2.143 MPa higher than pedicle region. With cement volume increasing, the maximal stress (MS) at the screw tip region decreased dramatically, while MS at pedicle region was not obviously affected. As dose increased to 1.5 mL, the MS at pedicle region became higher than screw tip region and the maximal stress difference was observed at 3.5 mL. IRC of the vertebra located at the facet joint region in PS model. While IRC in CAPS models shifted anteriorly closer to the vertebral body with the increasing of cement volume. Under axial pull-out load, the maximal stress (MS) of cancellous bone in CAPS models was 29.53-50.04% lower than that 2.228 MPa in PS model. MS in the screw-bone interface did not change significantly with cement volume increasing. Therefore, the possible mechanism is that anterior shift of IRC and the negative difference value of MS between screw tip and pedicle region due to cement augmentation, leading to the screw rotate around the cement-screw complex as the fulcrum point.

SELECTION OF CITATIONS
SEARCH DETAIL
...