Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Mol Cell Res ; 1870(4): 119438, 2023 04.
Article in English | MEDLINE | ID: mdl-36758859

ABSTRACT

Tracheal stenosis (TS) is a multifactorial and heterogeneous disease that can easily lead to respiratory failure and even death. Interleukin-11 (IL-11) has recently received increased attention as a fibrogenic factor, but its function in TS is uncertain. This study aimed to investigate the role of IL-11 in TS regulation based on clinical samples from patients with TS and a rat model of TS produced by nylon brush scraping. Using lentiviral vectors expressing shRNA (lentivirus-shRNA) targeting the IL-11 receptor (IL-11Rα), we lowered IL-11Rα levels in the rat trachea. Histological and immunostaining methods were used to evaluate the effects of IL-11Rα knockdown on tracheal injury, molecular phenotype, and fibrosis in TS rats. We show that IL-11 was significantly elevated in circulating serum and granulation tissue in patients with TS. In vitro, TGFß1 dose-dependently stimulated IL-11 secretion from human tracheal epithelial cells (Beas-2b) and primary rat tracheal fibroblasts (PRTF). IL-11 transformed the epithelial cell phenotype to the mesenchymal cell phenotype by activating the ß-catenin pathway. Furthermore, IL-11 activated the atypical ERK signaling pathway, stimulated fibroblasts proliferation, and transformed fibroblasts into alpha-smooth muscle actin (α-SMA) positive myofibroblasts. IL-11-neutralizing antibodies (IL-11NAb) or ERK inhibitors (U0126) inhibited IL-11 activity and downregulated fibrotic responses involving TGFß/SMAD signaling. In vivo, IL-11Rα knockdown rats showed unobstructed tracheal lumen, relatively intact epithelial structure, and significantly reduced granulation tissue proliferation and collagen fiber deposition. Our findings confirm that IL-11 may be a target for future drug prevention and treatment of tracheal stenosis.


Subject(s)
Trachea , Tracheal Stenosis , Humans , Rats , Animals , Trachea/metabolism , Trachea/pathology , Tracheal Stenosis/genetics , Tracheal Stenosis/drug therapy , Tracheal Stenosis/metabolism , Interleukin-11/genetics , Interleukin-11/metabolism , Fibrosis , Epithelial Cells/metabolism , Fibroblasts/metabolism , Phenotype
2.
Exp Lung Res ; 40(2): 86-98, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24446702

ABSTRACT

The use of mycobacteriophage D29 to treat Mycobacterium tuberculosis (MTB)-infected macrophages results in significant inhibitory activity. This study aims to explore the novel treatment strategy of intracellular mycobacterial infection from the point of view of phages. We investigated the dynamic phagocytosis and elimination of D29 by macrophages, measured the titer of D29 inside and outside MTB within macrophages by fluorescence quantitative PCR, and detected the levels of interleukin 12 (IL-12) and nitric oxide (NO) in the culture supernatants of D29-infected macrophages by ELISA. Results showed that the activity of D29 phagocytosed by macrophages was significantly lower than that of D29 phagocytosed by MTB-infected macrophages. The titer of D29 that infected intracellular MTB ranged from 10(9) pfu to 10(4) pfu. The titer of D29 inside and outside intracellular MTB transiently increased when MTB-infected macrophages were incubated with D29 for 40 and 50 min; then, a large number of D29 were eliminated by macrophages. The levels of IL-12 and NO had no significant differences versus the negative control but were significantly lower compared with the lipopolysaccharide (LPS) positive control. These results suggest D29 has no effect on the immune function of macrophages and that high phage titer must be administered repeatedly if D29 is applied to treat intracellular MTB infection.


Subject(s)
Immunity/physiology , Macrophages/immunology , Macrophages/metabolism , Mycobacterium tuberculosis , Tumor Suppressor Proteins/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Interleukin-2/metabolism , Macrophages/microbiology , Mice , Mice, Inbred BALB C , Mycobacteriophages/metabolism , Nitric Oxide/metabolism , Phagocytosis/physiology , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/metabolism , Tuberculosis, Pulmonary/pathology , Up-Regulation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...