Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Polym Au ; 3(6): 457-465, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38107413

ABSTRACT

Molecular architecture is a critical factor in regulating phase behaviors of the block copolymer and prompting the formation of unconventional nanostructures. This work meticulously designed a library of isomeric miktoarm star polymers with an architectural evolution from the linear-branched block copolymer to the miktoarm star block copolymer and to the star-like block copolymer (i.e., 3AB → 3(AB1)B2 → 3(AB)). All of the polymers have precise chemical composition and uniform chain length, eliminating inherent molecular uncertainties such as chain length distribution or architectural defects. The self-assembly behaviors were systematically studied and compared. Gradually increasing the relative length of the branched B1 block regulates the ratio between the bridge and loop configuration and effectively releases packing frustration in the formation of the spherical or cylindrical structures, leading to a substantial deflection of phase boundaries. Complex structures, such as Frank-Kasper phases, were captured at a surprisingly higher volume fraction. Rationally regulating the molecular architecture offers rich possibilities to tune the packing symmetry of block copolymers.

2.
J Am Chem Soc ; 145(1): 487-497, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36572645

ABSTRACT

This work demonstrates an effective and robust approach to regulate phase behaviors of a block copolymer by programming local features into otherwise homogeneous linear chains. A library of sequence-defined, isomeric block copolymers with globally the same composition but locally different side chain patterns were elaborately designed and prepared through an iterative convergent growth method. The precise chemical structure and uniform chain length rule out all inherent molecular defects associated with statistical distribution. The local features are found to exert surprisingly pronounced impacts on the self-assembly process, which have yet to be well recognized. While other molecular parameters remain essentially the same, simply rearranging a few methylene units among the alkyl side chains leads to strikingly different phase behaviors, bringing about (i) a rich diversity of nanostructures across hexagonally packed cylinders, Frank-Kasper A15 phase, Frank-Kasper σ phase, dodecagonal quasicrystals, and disordered state; (ii) a significant change of lattice dimension; and (iii) a substantial shift of order-to-disorder transition temperature (up to 40 °C). Different from the commonly observed enthalpy-dominated cases, the frustration due to the divergence between the native molecular geometry originating from side chain distribution and the local packing environment mandated by lattice symmetry is believed to play a pivotal role. Engineering the local chain feature introduces another level of structural complexity, opening up a new and effective pathway for modulating phase transition without changing the chemistry or composition.

3.
ACS Macro Lett ; 11(4): 555-561, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35575328

ABSTRACT

The inherent statistical heterogeneities associated with chain length, composition, and architecture of synthetic block copolymers compromise the quantitative interpretation of their self-assembly process. This study scrutinizes the contribution of molecular architecture on phase behaviors using discrete ABA triblock copolymers with precise chemical structure and uniform chain length. A group of discrete triblock copolymers with varying composition and symmetry were modularly synthesized through a combination of iterative growth methods and efficient coupling reactions. The symmetric ABA triblock copolymers self-assemble into long-range ordered structures with expanded domain spacings and enhanced phase stability, compared with the diblock counterparts snipped at the middle point. By tuning the relative chain length of two end blocks, the molecular asymmetry reduces the packing frustration, and thus increases the order-to-disorder transition temperature and enlarges the domain sizes. This study would serve as a quantitative model system to correlate the experimental observations with the theoretical assessments and to provide quantitative understandings for the relationship between molecular architecture and self-assembly.

4.
J Am Chem Soc ; 143(44): 18744-18754, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34714634

ABSTRACT

Molecular shape is an essential parameter that regulates the self-organization and recognition process, which has not yet been well appreciated and exploited in block polymers due to the lack of precise and efficient modulation methods. This work (i) develops a robust approach to break the intrinsic symmetry of linear polymers by introducing geometric features into otherwise homogeneous chains and (ii) quantitatively highlights the critical contribution of molecular geometry/architecture to the self-assembly behaviors. Iteratively connecting homologous monomers of different side chains according to pre-designed sequences generates discrete polymers with exact chemical structure, uniform chain length, and programmable side-chain gradient along the backbone, which transcribes into diverse shapes. The precise chemistry eliminates all the defects and heterogeneities, providing a delicate platform for fundamental inquiries into the role of molecular geometry. A rich collection of unconventional complex phases, including Frank-Kasper A15 and σ phases, as well as a dodecagonal quasicrystal phase, were captured in these rigorous single-component systems. The self-assembly behaviors are strikingly sensitive to subtle variations of geometry, such that simply migrating a few methylene units among the side chains would generate substantial differences in lattice size or phase stability, or even trigger a phase transition toward distinct structures. The phenomena can be rationalized with a geometric argument that nonuniform side chain distribution leads to conformational mismatch between two immiscible blocks, resulting in varied interfacial curvatures and distinct lattice symmetries. The profound contribution demonstrates that molecular geometry is an effective and robust parameter for structural engineering.

5.
JACS Au ; 1(1): 79-86, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-34467271

ABSTRACT

As size-amplified analogues of canonical macromolecules, polymeric chains built up by "giant" monomers represent an experimental realization of the "beads-on-a-string" model at larger length scales, which could provide insights into fundamental principles of polymer science. In this work, we modularly constructed discrete giant polymeric chains using nanosized building blocks (polyhedral oligomeric silsesquioxane, POSS) as basic repeat units through an efficient and robust iterative exponential growth approach, with precise control on molecular parameters, including size, composition, regioconfiguration, and surface functionalities. Their chemical structures were fully characterized by nuclear magnetic resonance spectroscopy, size-exclusion chromatography, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. With elaborately designed amphiphilic block POSS chains and their analogues made of conventional monomers, the size effects were delicately studied and highlighted. Interesting assembly behaviors emerge as a result of distinct interactions and molecular dynamics. This category of molecules shares general self-assembly characteristics as the conventional counterparts in terms of phase transition and evolution. Meanwhile, it turns out that the monomer size has profound impacts on phase stability, as a trade-off between entropic and enthalpic contributions. It may open up a door for modular and programmable design of interesting materials with complex structures and diverse functions.

6.
ACS Nano ; 15(7): 12367-12374, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34236829

ABSTRACT

Polymeric chains made of "giant" monomers at a larger length scale provide intriguing insights into the fundamental principles of polymer science. In this study, we modularly prepared a library of discrete amphiphilic polymeric chains using molecular nanoparticles as repeat units, with exact control of composition, chain length, surface property, and regio-configuration. These giant polymeric chains self-assembled into a rich collection of highly ordered phases. The precise chemical structure and uniform chain length eliminate all the inherent molecular "defects", while the nanosized monomer amplifies minute structural differences, providing an ideal platform for a systematic scrutiny of the self-assembly behaviors at a larger length scale. The compositional and regio-configurational contribution was carefully studied. The regio-regularity is found to have a direct and profound impact on the chain conformation, leading to a distinct molecular packing scheme and therefore shifting the phase boundaries. With increasing the length of the linker, the regio-constraint gradually diminishes, and the neighboring particles would eventually be decoupled.

7.
ACS Cent Sci ; 6(8): 1386-1393, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32875079

ABSTRACT

This work describes the first rigorous example of a single-component block copolymer system forming unconventional spherical phases. A library of discrete block polymers with uniform chain length and diverse architectures were modularly prepared through a combination of a step-growth approach and highly efficient coupling reactions. The precise chemical structure eliminates all the molecular defects associated with molar weight, dispersity, and compositional ratio. Complex spherical phases, including the Frank-Kasper phase (A15 and σ) and quasicrystalline phase, were experimentally captured by meticulously tuning the composition and architectures. A phase portrait with unprecedented accuracy was mapped out (up to one monomer resolution), unraveling intriguing details of phase behaviors that have long been compromised by inherent molecular weight distribution. This study serves as a delicate model system to bridge the existing gaps between experimental observations and theoretical assessments and to provide insights into the formation and evolution of the unconventional spherical phases in soft matter systems.

8.
ACS Nano ; 14(10): 13816-13823, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-32935968

ABSTRACT

Anisotropic patchy particles with molecular precision are exquisite building blocks for constructing diverse meso-structures of high complexity. In this research, a library of molecular patchy clusters consisting of a collection of functional polyhedral oligomeric silsesquioxane cages with exact regio-configuration and composition were prepared through a robust and modular approach. By meticulously tuning the composition, molecular symmetry, and other parameters, these patchy clusters could assemble into diverse nanostructures, including unconventional complex spherical phases (i.e., Frank-Kasper σ phase and dodecagonal quasicrystalline phase). As the size of the hydrophilic patch expands, a transition sequence from disorder to hexagonally packed cylinders and then to double gyroids was recorded, corresponding to a progressive decrease of interfacial curvature. On the other hand, regioisomers with the same composition but different regio-configuration adopt similar molecular packing but varied phase stability, as a result of the local self-sorting process to alleviate excess unfavorable interfacial contact. These precisely defined molecular patchy clusters provide a model system for a general understanding of the hierarchical structure formation and evolution based on anisotropic spherical building blocks at the nanoscale.

SELECTION OF CITATIONS
SEARCH DETAIL
...