Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 299(12): 105437, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37944617

ABSTRACT

The zwitterions phosphorylcholine (PC) and phosphoethanolamine (PE) are often found esterified to certain sugars in polysaccharides and glycoconjugates in a wide range of biological species. One such modification involves PC attachment to the 6-carbon of N-acetylglucosamine (GlcNAc-6-PC) in N-glycans and glycosphingolipids (GSLs) of parasitic nematodes, a modification that helps the parasite evade host immunity. Knowledge of enzymes involved in the synthesis and degradation of PC and PE modifications is limited. More detailed studies on such enzymes would contribute to a better understanding of the function of PC modifications and have potential application in the structural analysis of zwitterion-modified glycans. In this study, we used functional metagenomic screening to identify phosphodiesterases encoded in a human fecal DNA fosmid library that remove PC from GlcNAc-6-PC. A novel bacterial phosphodiesterase was identified and biochemically characterized. This enzyme (termed GlcNAc-PDase) shows remarkable substrate preference for GlcNAc-6-PC and GlcNAc-6-PE, with little or no activity on other zwitterion-modified hexoses. The identified GlcNAc-PDase protein sequence is a member of the large endonuclease/exonuclease/phosphatase superfamily where it defines a distinct subfamily of related sequences of previously unknown function, mostly from Clostridium bacteria species. Finally, we demonstrate use of GlcNAc-PDase to confirm the presence of GlcNAc-6-PC in N-glycans and GSLs of the parasitic nematode Brugia malayi in a glycoanalytical workflow.


Subject(s)
Phosphoric Diester Hydrolases , Sugars , Humans , Phosphoric Diester Hydrolases/genetics , Carbohydrates , Glycoconjugates/chemistry , Polysaccharides/metabolism , Acetylglucosamine/metabolism
2.
PLoS One ; 18(7): e0286435, 2023.
Article in English | MEDLINE | ID: mdl-37471401

ABSTRACT

We report here the first occurrence of an adenosine deaminase-related growth factor (ADGF) that deaminates adenosine 5' monophosphate (AMP) in preference to adenosine. The ADGFs are a group of secreted deaminases found throughout the animal kingdom that affect the extracellular concentration of adenosine by converting it to inosine. The AMP deaminase studied here was first isolated and biochemically characterized from the roman snail Helix pomatia in 1983. Determination of the amino acid sequence of the AMP deaminase enabled sequence comparisons to protein databases and revealed it as a member of the ADGF family. Cloning and expression of its cDNA in Pichia pastoris allowed the comparison of the biochemical characteristics of the native and recombinant forms of the enzyme and confirmed they correspond to the previously reported activity. Uncharacteristically, the H. pomatia AMP deaminase was determined to be dissimilar to the AMP deaminase family by sequence comparison while demonstrating similarity to the ADGFs despite having AMP as its preferred substrate rather than adenosine.


Subject(s)
AMP Deaminase , Animals , Adenosine Deaminase/metabolism , Adenosine/metabolism , Mollusca/metabolism , Intercellular Signaling Peptides and Proteins , Adenosine Monophosphate
3.
Sci Rep ; 12(1): 15763, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36131114

ABSTRACT

Serum N-glycan profiling studies during the past decades have shown robust associations between N-glycan changes and various biological conditions, including infections, in humans. Similar studies are scarcer for other mammals, despite the tremendous potential of serum N-glycans as biomarkers for infectious diseases in animal models of human disease and in the veterinary context. To expand the knowledge of serum N-glycan profiles in important mammalian model systems, in this study, we combined MALDI-TOF-MS analysis and HILIC-UPLC profiling of released N-glycans together with glycosidase treatments to characterize the glycan structures present in rhesus macaque serum. We used this baseline to monitor changes in serum N-glycans during infection with Brugia malayi, a parasitic nematode of humans responsible for lymphatic filariasis, in a longitudinal cohort of infected rhesus macaques. Alterations of the HILIC-UPLC profile, notably of abundant structures, became evident as early as 5 weeks post-infection. Given its prominent role in the immune response, contribution of immunoglobulin G to serum N-glycans was investigated. Finally, comparison with similar N-glycan profiling performed during infection with the dog heartworm Dirofilaria immitis suggests that many changes observed in rhesus macaque serum N-glycans are specific for lymphatic filariasis.


Subject(s)
Brugia malayi , Dirofilaria immitis , Elephantiasis, Filarial , Animals , Biomarkers , Dirofilaria immitis/physiology , Dogs , Elephantiasis, Filarial/parasitology , Glycoside Hydrolases , Humans , Immunoglobulin G , Macaca mulatta , Mammals , Polysaccharides
4.
Protein Expr Purif ; 190: 105987, 2022 02.
Article in English | MEDLINE | ID: mdl-34637916

ABSTRACT

Combinations of ribonucleases (RNases) are commonly used to digest RNA into oligoribonucleotide fragments prior to liquid chromatography-mass spectrometry (LC-MS) analysis. The distribution of the RNase target sequences or nucleobase sites within an RNA molecule is critical for achieving a high mapping coverage. Cusativin and MC1 are nucleotide-specific endoribonucleases encoded in the cucumber and bitter melon genomes, respectively. Their high specificity for cytidine (Cusativin) and uridine (MC1) make them ideal molecular biology tools for RNA modification mapping. However, heterogenous recombinant expression of either enzyme has been challenging because of their high toxicity to expression hosts and the requirement of posttranslational modifications. Here, we present two highly efficient and time-saving protocols that overcome these hurdles and enhance the expression and purification of these RNases. We first purified MC1 and Cusativin from bacteria by expressing and shuttling both enzymes to the periplasm as MBP-fusion proteins in T7 Express lysY/IqE. coli strain at low temperature. The RNases were enriched using amylose affinity chromatography, followed by a subsequent purification via a C-terminal 6xHIS tag. This fast, two-step purification allows for the purification of highly active recombinant RNases significantly surpassing yields reported in previous studies. In addition, we expressed and purified a Cusativin-CBD fusion enzyme in P. pastoris using chitin magnetic beads. Both Cusativin variants exhibited a similar sequence preference, suggesting that neither posttranslational modifications nor the epitope-tags have a substantial effect on the sequence specificity of the enzyme.


Subject(s)
Endoribonucleases , Escherichia coli , Gene Expression , Ribonucleases , Endoribonucleases/biosynthesis , Endoribonucleases/chemistry , Endoribonucleases/genetics , Endoribonucleases/isolation & purification , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Ribonucleases/biosynthesis , Ribonucleases/chemistry , Ribonucleases/genetics , Ribonucleases/isolation & purification
5.
Microb Cell Fact ; 20(1): 162, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34419057

ABSTRACT

BACKGROUND: Sulfate modification of N-glycans is important for several biological functions such as clearance of pituitary hormones or immunoregulation. Yet, the prevalence of this N-glycan modification and its functions remain largely unexplored. Characterization of N-glycans bearing sulfate modifications is hampered in part by a lack of enzymes that enable site-specific detection of N-glycan sulfation. In this study, we used functional metagenomic screening to identify enzymes that act upon sulfated N-acetylglucosamine (GlcNAc). Using multiplexed capillary gel electrophoresis with laser-induced fluorescence detection (xCGE-LIF) -based glycoanalysis we proved their ability to act upon GlcNAc-6-SO4 on N-glycans. RESULTS: Our screen identified a sugar-specific sulfatase that specifically removes sulfate from GlcNAc-6-SO4 when it is in a terminal position on an N-glycan. Additionally, in the absence of calcium, this sulfatase binds to the sulfated glycan but does not remove the sulfate group, suggesting it could be used for selective isolation of sulfated N-glycans. Further, we describe isolation of a sulfate-dependent hexosaminidase that removes intact GlcNAc-6-SO4 (but not asulfated GlcNAc) from a terminal position on N-glycans. Finally, the use of these enzymes to detect the presence of sulfated N-glycans by xCGE-LIF is demonstrated. CONCLUSION: The present study demonstrates the feasibility of using functional metagenomic screening combined with glycoanalytics to discover enzymes that act upon chemical modifications of glycans. The discovered enzymes represent new specificities that can help resolve the presence of GlcNAc-6-SO4 in N-glycan structural analyses.


Subject(s)
Acetylglucosamine/metabolism , Enzymes/isolation & purification , Enzymes/metabolism , Metagenomics/methods , Polysaccharides/chemistry , Polysaccharides/metabolism , Sulfates/metabolism , Enzymes/genetics , Kinetics , Sulfates/chemistry
6.
Sci Rep ; 11(1): 160, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33420304

ABSTRACT

The BLL lectin from the edible Japanese "Kurokawa" mushroom (Boletopsis leucomelaena) was previously reported to bind to N-glycans harboring terminal N-acetylglucosamine (GlcNAc) and to induce apoptosis in a leukemia cell line. However, its gene has not been reported. In this study, we used a transcriptomics-based workflow to identify a full-length transcript of a BLL functional ortholog (termed BGL) from Boletopsis grisea, a close North American relative of B. leucomelaena. The deduced amino acid sequence of BGL was an obvious member of fungal fruit body lectin family (Pfam PF07367), a highly conserved group of mushroom lectins with a preference for binding O-glycans harboring the Thomsen-Friedenreich antigen (TF-antigen; Galß1,3GalNAc-α-) and having two ligand binding sites. Functional characterization of recombinant BGL using glycan microarray analysis and surface plasmon resonance confirmed its ability to bind both the TF-antigen and ß-GlcNAc-terminated N-glycans. Structure-guided mutagenesis of BGL's two ligand binding clefts showed that one site is responsible for binding TF-antigen structures associated with O-glycans, whereas the second site specifically recognizes N-glycans with terminal ß-GlcNAc. Additionally, the two sites show no evidence of allosteric communication. Finally, mutant BGL proteins having single functional bindings site were used to enrich GlcNAc-capped N-glycans or mucin type O-glycopeptides from complex samples in glycomics and glycoproteomics analytical workflows.


Subject(s)
Basidiomycota/metabolism , Fungal Proteins/metabolism , Lectins/metabolism , Agaricales/chemistry , Agaricales/genetics , Agaricales/metabolism , Amino Acid Sequence , Basidiomycota/chemistry , Basidiomycota/genetics , Binding Sites , Fungal Proteins/chemistry , Fungal Proteins/genetics , Humans , Lectins/chemistry , Lectins/genetics , Polysaccharides/chemistry , Polysaccharides/metabolism , Protein Binding , Sequence Alignment
7.
Nat Microbiol ; 4(12): 2082-2089, 2019 12.
Article in English | MEDLINE | ID: mdl-31548686

ABSTRACT

Dietary habits have been associated with alterations of the human gut resident microorganisms contributing to obesity, diabetes and cancer1. In Western diets, red meat is a frequently eaten food2, but long-term consumption has been associated with increased risk of disease3,4. Red meat is enriched in N-glycolylneuraminic acid (Neu5Gc) that cannot be synthesized by humans5. However, consumption can cause Neu5Gc incorporation into cell surface glycans6, especially in carcinomas4,7. As a consequence, an inflammatory response is triggered when Neu5Gc-containing glycans encounter circulating anti-Neu5Gc antibodies8,9. Although bacteria can use free sialic acids as a nutrient source10-12, it is currently unknown if gut microorganisms contribute to releasing Neu5Gc from food. We found that a Neu5Gc-rich diet induces changes in the gut microbiota, with Bacteroidales and Clostridiales responding the most. Genome assembling of mouse and human shotgun metagenomic sequencing identified bacterial sialidases with previously unobserved substrate preference for Neu5Gc-containing glycans. X-ray crystallography revealed key amino acids potentially contributing to substrate preference. Additionally, we verified that mouse and human sialidases were able to release Neu5Gc from red meat. The release of Neu5Gc from red meat using bacterial sialidases could reduce the risk of inflammatory diseases associated with red meat consumption, including colorectal cancer4 and atherosclerosis13.


Subject(s)
Bacteria/enzymology , Diet , Gastrointestinal Microbiome , Neuraminic Acids/metabolism , Neuraminidase/genetics , Polysaccharides/metabolism , Red Meat/analysis , Animals , Bacteria/classification , Bacteroides/enzymology , Bacteroides/genetics , Clostridiales/enzymology , Clostridiales/genetics , Crystallography, X-Ray , Feces/chemistry , Feces/microbiology , Female , Humans , Male , Metagenomics , Mice , Mice, Inbred C57BL , Neuraminidase/metabolism , Polysaccharides/chemistry
8.
J Biol Chem ; 293(47): 18138-18150, 2018 11 23.
Article in English | MEDLINE | ID: mdl-30249617

ABSTRACT

Exosialidases are glycoside hydrolases that remove a single terminal sialic acid residue from oligosaccharides. They are widely distributed in biology, having been found in prokaryotes, eukaryotes, and certain viruses. Most characterized prokaryotic sialidases are from organisms that are pathogenic or commensal with mammals. However, in this study, we used functional metagenomic screening to seek microbial sialidases encoded by environmental DNA isolated from an extreme ecological niche, a thermal spring. Using recombinant expression of potential exosialidase candidates and a fluorogenic sialidase substrate, we discovered an exosialidase having no homology to known sialidases. Phylogenetic analysis indicated that this protein is a member of a small family of bacterial proteins of previously unknown function. Proton NMR revealed that this enzyme functions via an inverting catalytic mechanism, a biochemical property that is distinct from those of known exosialidases. This unique inverting exosialidase defines a new CAZy glycoside hydrolase family we have designated GH156.


Subject(s)
Bacteria/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Multigene Family , Neuraminidase/chemistry , Neuraminidase/genetics , Amino Acid Sequence , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Proteins/metabolism , Catalytic Domain , Enzyme Stability , Fresh Water/microbiology , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Hot Temperature , Metagenomics , Molecular Sequence Data , Neuraminidase/metabolism , Open Reading Frames , Phylogeny , Substrate Specificity
9.
Genome Announc ; 5(30)2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28751387

ABSTRACT

We report the genome sequence of the dairy yeast Kluyveromyces lactis strain GG799 obtained using the Pacific Biosciences RS II platform. K. lactis strain GG799 is a common host for the expression of proteins at both laboratory and industrial scales.

10.
FEMS Yeast Res ; 11(2): 168-78, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21166768

ABSTRACT

Secretion of recombinant proteins is a common strategy for heterologous protein expression using the yeast Kluyveromyces lactis. However, a common problem is degradation of a target recombinant protein by secretory pathway aspartyl proteases. In this study, we identified five putative pfam00026 aspartyl proteases encoded by the K. lactis genome. A set of selectable marker-free protease deletion mutants was constructed in the prototrophic K. lactis GG799 industrial expression strain background using a PCR-based dominant marker recycling method based on the Aspergillus nidulans acetamidase gene (amdS). Each mutant was assessed for its secretion of protease activity, its health and growth characteristics, and its ability to efficiently produce heterologous proteins. In particular, despite having a longer lag phase and slower growth compared with the other mutants, a Δyps1 mutant demonstrated marked improvement in both the yield and the quality of Gaussia princeps luciferase and the human chimeric interferon Hy3, two proteins that experienced significant proteolysis when secreted from the wild-type parent strain.


Subject(s)
Aspartic Acid Proteases/deficiency , Gene Expression , Kluyveromyces/enzymology , Kluyveromyces/metabolism , Recombinant Proteins/metabolism , Arecaceae/enzymology , DNA, Fungal/chemistry , DNA, Fungal/genetics , Fungal Proteins/genetics , Gene Deletion , Kluyveromyces/genetics , Luciferases/metabolism , Molecular Sequence Data , Mutagenesis , Sequence Analysis, DNA
11.
PLoS Negl Trop Dis ; 3(7): e475, 2009 Jul 14.
Article in English | MEDLINE | ID: mdl-19597542

ABSTRACT

BACKGROUND: Filarial parasites (e.g., Brugia malayi, Onchocerca volvulus, and Wuchereria bancrofti) are causative agents of lymphatic filariasis and onchocerciasis, which are among the most disabling of neglected tropical diseases. There is an urgent need to develop macro-filaricidal drugs, as current anti-filarial chemotherapy (e.g., diethylcarbamazine [DEC], ivermectin and albendazole) can interrupt transmission predominantly by killing microfilariae (mf) larvae, but is less effective on adult worms, which can live for decades in the human host. All medically relevant human filarial parasites appear to contain an obligate endosymbiotic bacterium, Wolbachia. This alpha-proteobacterial mutualist has been recognized as a potential target for filarial nematode life cycle intervention, as antibiotic treatments of filarial worms harboring Wolbachia result in the loss of worm fertility and viability upon antibiotic treatments both in vitro and in vivo. Human trials have confirmed this approach, although the length of treatments, high doses required and medical counter-indications for young children and pregnant women warrant the identification of additional anti-Wolbachia drugs. METHODS AND FINDINGS: Genome sequence analysis indicated that enzymes involved in heme biosynthesis might constitute a potential anti-Wolbachia target set. We tested different heme biosynthetic pathway inhibitors in ex vivo B. malayi viability assays and report a specific effect of N-methyl mesoporphyrin (NMMP), which targets ferrochelatase (FC, the last step). Our phylogenetic analysis indicates evolutionarily significant divergence between Wolbachia heme genes and their human homologues. We therefore undertook the cloning, overexpression and analysis of several enzymes of this pathway alongside their human homologues, and prepared proteins for drug targeting. In vitro enzyme assays revealed a approximately 600-fold difference in drug sensitivities to succinyl acetone (SA) between Wolbachia and human 5'-aminolevulinic acid dehydratase (ALAD, the second step). Similarly, Escherichia coli hemH (FC) deficient strains transformed with human and Wolbachia FC homologues showed significantly different sensitivities to NMMP. This approach enables functional complementation in E. coli heme deficient mutants as an alternative E. coli-based method for drug screening. CONCLUSIONS: Our studies indicate that the heme biosynthetic genes in the Wolbachia of B. malayi (wBm) might be essential for the filarial host survival. In addition, the results suggest they are likely candidate drug targets based upon significant differences in phylogenetic distance, biochemical properties and sensitivities to heme biosynthesis inhibitors, as compared to their human homologues.


Subject(s)
Biosynthetic Pathways/drug effects , Brugia malayi/growth & development , Brugia malayi/microbiology , Heme/biosynthesis , Wolbachia/drug effects , Wolbachia/metabolism , Animals , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Biosynthetic Pathways/genetics , Brugia malayi/physiology , Cloning, Molecular , Cluster Analysis , Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Female , Genetic Complementation Test , Heme/genetics , Humans , Locomotion , Male , Phylogeny , Sequence Homology , Wolbachia/isolation & purification
12.
Parasitol Res ; 104(5): 1047-52, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19043737

ABSTRACT

Phosphoglycerate mutases (PGM) interconvert 2- and 3-phosphoglycerate in the glycolytic and gluconeogenic pathways. A putative cofactor-independent phosphoglycerate mutase gene (iPGM) was identified in the genome sequence of the Wolbachia endosymbiont from the filarial nematode, Brugia malayi (wBm). Since iPGM has no sequence or structural similarity to the cofactor-dependent phosphoglycerate mutase (dPGM) found in mammals, it may represent an attractive Wolbachia drug target. In the present study, wBm-iPGM cloned and expressed in Escherichia coli was mostly insoluble and inactive. However, the protein was successfully produced in the yeast Kluyveromyces lactis and the purified recombinant wBm-iPGM showed typical PGM activity. Our results provide a foundation for further development of wBm-iPGM as a promising new drug target for novel anti-filarial therapies that selectively target the endosymbiont.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Brugia malayi/microbiology , Phosphoglycerate Mutase/genetics , Phosphoglycerate Mutase/metabolism , Wolbachia/enzymology , Amino Acid Sequence , Animals , Bacterial Proteins/isolation & purification , Cloning, Molecular , Escherichia coli/genetics , Gene Expression , Kluyveromyces/genetics , Molecular Sequence Data , NAD/metabolism , Phosphoglycerate Mutase/isolation & purification , Sequence Alignment , Wolbachia/genetics
13.
Science ; 317(5845): 1756-60, 2007 Sep 21.
Article in English | MEDLINE | ID: mdl-17885136

ABSTRACT

Parasitic nematodes that cause elephantiasis and river blindness threaten hundreds of millions of people in the developing world. We have sequenced the approximately 90 megabase (Mb) genome of the human filarial parasite Brugia malayi and predict approximately 11,500 protein coding genes in 71 Mb of robustly assembled sequence. Comparative analysis with the free-living, model nematode Caenorhabditis elegans revealed that, despite these genes having maintained little conservation of local synteny during approximately 350 million years of evolution, they largely remain in linkage on chromosomal units. More than 100 conserved operons were identified. Analysis of the predicted proteome provides evidence for adaptations of B. malayi to niches in its human and vector hosts and insights into the molecular basis of a mutualistic relationship with its Wolbachia endosymbiont. These findings offer a foundation for rational drug design.


Subject(s)
Brugia malayi/genetics , Genome, Helminth , Animals , Brugia malayi/physiology , Caenorhabditis/genetics , Drosophila melanogaster/genetics , Drug Resistance/genetics , Filariasis/parasitology , Humans , Molecular Sequence Data
14.
Appl Environ Microbiol ; 73(16): 5088-96, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17586678

ABSTRACT

The yeast Kluyveromyces lactis has been extensively used as a host for heterologous protein expression. A necessary step in the construction of a stable expression strain is the introduction of an integrative expression vector into K. lactis cells, followed by selection of transformed strains using either medium containing antibiotic (e.g., G418) or nitrogen-free medium containing acetamide. In this study, we show that selection using acetamide yields K. lactis transformant populations nearly completely comprised of strains bearing multiple tandem insertions of the expression vector pKLAC1 at the LAC4 chromosomal locus, whereas an average of 16% of G418-selected transformants are multiply integrated. Additionally, the average copy number within transformant populations doubled when acetamide was used for selection compared to G418. Finally, we demonstrate that the high frequency of multicopy integration associated with using acetamide selection can be exploited to rapidly construct expression strains that simultaneously produce multiple heterologous proteins or multisubunit proteins, such as Fab antibodies.


Subject(s)
Acetamides/pharmacology , Genetic Vectors/genetics , Kluyveromyces/genetics , Transformation, Genetic/drug effects , Carrier Proteins/genetics , Carrier Proteins/metabolism , Electrophoresis, Gel, Pulsed-Field , Electrophoresis, Polyacrylamide Gel , Gene Dosage , Gene Expression Regulation, Bacterial/drug effects , Maltose-Binding Proteins , Models, Genetic , Polymerase Chain Reaction , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
15.
PLoS Biol ; 3(4): e121, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15780005

ABSTRACT

Complete genome DNA sequence and analysis is presented for Wolbachia, the obligate alpha-proteobacterial endosymbiont required for fertility and survival of the human filarial parasitic nematode Brugia malayi. Although, quantitatively, the genome is even more degraded than those of closely related Rickettsia species, Wolbachia has retained more intact metabolic pathways. The ability to provide riboflavin, flavin adenine dinucleotide, heme, and nucleotides is likely to be Wolbachia's principal contribution to the mutualistic relationship, whereas the host nematode likely supplies amino acids required for Wolbachia growth. Genome comparison of the Wolbachia endosymbiont of B. malayi (wBm) with the Wolbachia endosymbiont of Drosophila melanogaster (wMel) shows that they share similar metabolic trends, although their genomes show a high degree of genome shuffling. In contrast to wMel, wBm contains no prophage and has a reduced level of repeated DNA. Both Wolbachia have lost a considerable number of membrane biogenesis genes that apparently make them unable to synthesize lipid A, the usual component of proteobacterial membranes. However, differences in their peptidoglycan structures may reflect the mutualistic lifestyle of wBm in contrast to the parasitic lifestyle of wMel. The smaller genome size of wBm, relative to wMel, may reflect the loss of genes required for infecting host cells and avoiding host defense systems. Analysis of this first sequenced endosymbiont genome from a filarial nematode provides insight into endosymbiont evolution and additionally provides new potential targets for elimination of cutaneous and lymphatic human filarial disease.


Subject(s)
Brugia malayi/genetics , Evolution, Molecular , Genome, Bacterial , Wolbachia/genetics , Animals , Brugia malayi/pathogenicity , Gene Expression Regulation, Bacterial , Humans , Molecular Sequence Data , Symbiosis/genetics
16.
Mol Biochem Parasitol ; 137(2): 215-27, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15383292

ABSTRACT

Comparative nematode genomics has thus far been largely constrained to the genus Caenorhabditis, but a huge diversity of other nematode species, and genomes, exist. The Brugia malayi genome is approximately 100 Mb in size, and distributed across five chromosome pairs. Previous genomic investigations have included definition of major repeat classes and sequencing of selected genes. We have generated over 18,000 sequences from the ends of large-insert clones from bacterial artificial chromosome libraries. These end sequences, totalling over 10 Mb of sequence, contain just under 8 Mb of unique sequence. We identified the known Mbo I and Hha I repeat families in the sequence data, and also identified several new repeats based on their abundance. Genomic copies of 17% of B. malayi genes defined by expressed sequence tags have been identified. Nearly one quarter of end sequences can encode peptides with significant similarity to protein sequences in the public databases, and we estimate that we have identified more than 2700 new B. malayi genes. Importantly, 459 end sequences had homologues in other organisms, but lacked a match in the completely sequenced genomes of Caenorhabditis briggsae and Caenorhabditis elegans, emphasising the role of gene loss in genome evolution. B. malayi is estimated to have over 18,500 protein-coding genes.


Subject(s)
Brugia malayi/genetics , Genes, Helminth , Animals , Caenorhabditis/genetics , Caenorhabditis elegans/genetics , Chromosome Mapping , Chromosomes, Artificial, Bacterial/genetics , DNA, Helminth/genetics , Gene Conversion , Genome , Genomics , Molecular Sequence Data , RNA, Helminth/genetics , RNA, Ribosomal/genetics , Repetitive Sequences, Nucleic Acid , Retroelements/genetics , Species Specificity
17.
Int J Parasitol ; 34(6): 733-46, 2004 May.
Article in English | MEDLINE | ID: mdl-15111095

ABSTRACT

The parasitic nematode, Brugia malayi, causes lymphatic filariasis in humans, which in severe cases leads to the condition known as elephantiasis. The parasite contains an endosymbiotic alpha-proteobacterium of the genus Wolbachia that is required for normal worm development and fecundity and is also implicated in the pathology associated with infections by these filarial nematodes. Bacterial artificial chromosome libraries were constructed from B. malayi DNA and provide over 11-fold coverage of the nematode genome. Wolbachia genomic fragments were simultaneously cloned into the libraries giving over 5-fold coverage of the 1.1 Mb bacterial genome. A physical framework for the Wolbachia genome was developed by construction of a plasmid library enriched for Wolbachia DNA as a source of sequences to hybridise to high-density bacterial artificial chromosome colony filters. Bacterial artificial chromosome end sequencing provided additional Wolbachia probe sequences to facilitate assembly of a contig that spanned the entire genome. The Wolbachia sequences provided a marker approximately every 10 kb. Four rare-cutting restriction endonucleases were used to restriction map the genome to a resolution of approximately 60 kb and demonstrate concordance between the bacterial artificial chromosome clones and native Wolbachia genomic DNA. Comparison of Wolbachia sequences to public databases using BLAST algorithms under stringent conditions allowed confident prediction of 69 Wolbachia peptide functions and two rRNA genes. Comparison to closely related complete genomes revealed that while most sequences had orthologs in the genome of the Wolbachia endosymbiont from Drosophila melanogaster, there was no evidence for long-range synteny. Rather, there were a few cases of short-range conservation of gene order extending over regions of less than 10 kb. The molecular scaffold produced for the genome of the Wolbachia from B. malayi forms the basis of a genomic sequencing effort for this bacterium, circumventing the difficult challenge of purifying sufficient endosymbiont DNA from a tropical parasite for a whole genome shotgun sequencing strategy.


Subject(s)
Brugia malayi/genetics , Chromosome Mapping/methods , Chromosomes, Artificial, Bacterial/genetics , Wolbachia/genetics , Animals , Base Sequence , Contig Mapping/methods , DNA, Bacterial/genetics , DNA, Protozoan/genetics , Genome, Bacterial , Genome, Protozoan , Genomic Library , Molecular Weight , Plasmids , RNA, Bacterial/genetics , RNA, Ribosomal/genetics , Restriction Mapping/methods , Sequence Analysis, DNA/methods , Symbiosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...