Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 13(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38667040

ABSTRACT

Respiratory tract infections (RTIs) are the leading cause of antibiotic prescriptions, primarily due to the risk for secondary bacterial infections. In this study, we examined whether Echinacea could reduce the need for antibiotics by preventing RTIs and their complications, and subsequently investigated its safety profile. A comprehensive search of EMBASE, PubMed, Google Scholar, Cochrane DARE and clinicaltrials.gov identified 30 clinical trials (39 comparisons) studying Echinacea for the prevention or treatment of RTIs in 5652 subjects. Echinacea significantly reduced the monthly RTI occurrence, risk ratio (RR) 0.68 (95% CI 0.61-0.77) and number of patients with ≥1 RTI, RR = 0.75 [95% CI 0.69-0.81] corresponding to an odds ratio 0.53 [95% CI 0.42-0.67]. Echinacea reduced the risk of recurrent infections (RR = 0.60; 95% CI 0.46-0.80), RTI complications (RR = 0.44; 95% CI 0.36-0.54) and the need for antibiotic therapy (RR = 0.60; 95% CI 0.39-0.93), with total antibiotic therapy days reduced by 70% (IRR = 0.29; 95% CI 0.11-0.74). Alcoholic extracts from freshly harvested Echinacea purpurea were the strongest, with an 80% reduction of antibiotic treatment days, IRR 0.21 [95% CI 0.15-0.28]. An equal number of adverse events occurred with Echinacea and control treatment. Echinacea can safely prevent RTIs and associated complications, thereby decreasing the demand for antibiotics. Relevant differences exist between Echinacea preparations.

2.
Cell Mol Life Sci ; 80(4): 88, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36917314

ABSTRACT

The brain lacks a classic lymphatic drainage system. How it is cleansed of damaged proteins, cellular debris, and molecular by-products has remained a mystery for decades. Recent discoveries have identified a hybrid system that includes cerebrospinal fluid (CSF)-filled perivascular spaces and classic lymph vessels in the dural covering of the brain and spinal cord that functionally cooperate to remove toxic and non-functional trash from the brain. These two components functioning together are referred to as the glymphatic system. We propose that the high levels of melatonin secreted by the pineal gland directly into the CSF play a role in flushing pathological molecules such as amyloid-ß peptide (Aß) from the brain via this network. Melatonin is a sleep-promoting agent, with waste clearance from the CNS being highest especially during slow wave sleep. Melatonin is also a potent and versatile antioxidant that prevents neural accumulation of oxidatively-damaged molecules which contribute to neurological decline. Due to its feedback actions on the suprachiasmatic nucleus, CSF melatonin rhythm functions to maintain optimal circadian rhythmicity, which is also critical for preserving neurocognitive health. Melatonin levels drop dramatically in the frail aged, potentially contributing to neurological failure and dementia. Melatonin supplementation in animal models of Alzheimer's disease (AD) defers Aß accumulation, enhances its clearance from the CNS, and prolongs animal survival. In AD patients, preliminary data show that melatonin use reduces neurobehavioral signs such as sundowning. Finally, melatonin controls the mitotic activity of neural stem cells in the subventricular zone, suggesting its involvement in neuronal renewal.


Subject(s)
Aging , Brain , Glymphatic System , Melatonin , Sleep , Animals , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Brain/metabolism , Melatonin/cerebrospinal fluid , Humans
3.
Front Pharmacol ; 13: 856410, 2022.
Article in English | MEDLINE | ID: mdl-35559249

ABSTRACT

SARS-CoV-2 vaccination is effective in preventing severe Covid-19, but efficacy in reducing viral load and transmission wanes over time. In addition, the emergence of novel SARS-CoV-2 variants increases the threat of uncontrolled dissemination and additional antiviral therapies are urgently needed for effective containment. In previous in vitro studies Echinacea purpurea demonstrated strong antiviral activity against enveloped viruses, including SARS-CoV-2. In this study, we examined the potential of Echinacea purpurea in preventing and treating respiratory tract infections (RTIs) and in particular, SARS-CoV-2 infections. 120 healthy volunteers (m,f, 18-75 years) were randomly assigned to Echinacea prevention or control group without any intervention. After a run-in week, participants went through 3 prevention cycles of 2, 2 and 1 month with daily 2,400 mg Echinacea purpurea extract (Echinaforce®, EF). The prevention cycles were interrupted by breaks of 1 week. Acute respiratory symptoms were treated with 4,000 mg EF for up to 10 days, and their severity assessed via a diary. Naso/oropharyngeal swabs and venous blood samples were routinely collected every month and during acute illnesses for detection and identification of respiratory viruses, including SARS-CoV-2 via RT-qPCR and serology. Summarized over all phases of prevention, 21 and 29 samples tested positive for any virus in the EF and control group, of which 5 and 14 samples tested SARS-CoV-2 positive (RR = 0.37, Chi-square test, p = 0.03). Overall, 10 and 14 symptomatic episodes occurred, of which 5 and 8 were Covid-19 (RR = 0.70, Chi-square test, p > 0.05). EF treatment when applied during acute episodes significantly reduced the overall virus load by at least 2.12 log10 or approx. 99% (t-test, p < 0.05), the time to virus clearance by 8.0 days for all viruses (Wilcoxon test, p = 0.02) and by 4.8 days for SARS-CoV-2 (p > 0.05) in comparison to control. Finally, EF treatment significantly reduced fever days (1 day vs 11 days, Chi-square test, p = 0.003) but not the overall symptom severity. There were fewer Covid-19 related hospitalizations in the EF treatment group (N = 0 vs N = 2). EF exhibited antiviral effects and reduced the risk of viral RTIs, including SARS-CoV-2. By substantially reducing virus loads in infected subjects, EF offers a supportive addition to existing mandated treatments like vaccinations. Future confirmatory studies are warranted.

4.
Microorganisms ; 10(2)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35208665

ABSTRACT

Echinacea purpurea has been shown to broadly inhibit coronaviruses and SARS-CoV-2 in vitro. This review discusses the available clinical evidence from randomized, blinded and controlled human studies. Two RCTs capturing incidence of viral respiratory tract infections during Echinacea preventative treatment were identified including coronavirus infections. Incidence and/or viral loads were measured by RT-PCR and symptom severity was recorded. In a first study, Jawad et al. collected nasopharyngeal swabs from adults (N = 755) over 4 months of continuous prevention. Overall, 24 and 47 enveloped virus infections occurred, including 21 and 33 coronavirus detections (229E; HKU1; OC43) with Echinaforce® extract (2400 mg daily) and placebo, respectively (p = 0.0114). In a separate study, Ogal et al. administered the same extract (1200 mg) or control for 4 months to children (4-12 years) (N = 203). Echinacea reduced the incidence of enveloped virus infections from 47 to 29 (p = 0.0038) whereas 11 and 13 coronavirus detections (229E, OC43, NL63) were counted (p > 0.05). Respiratory symptoms during coronavirus infections were significantly lower with area-under-curve AUC = 75.8 (+/-50.24) versus 27.1 (+/-21.27) score points (p = 0.0036). Importantly, viral loads in nasal secretions were significantly reduced by 98.5% in the Echinacea group, with Ct-values 31.1 [95% CI 26.3; 35.9] versus 25.0 [95% CI 20.5; 29.5] in the control group (p = 0.0479). Results from clinical studies confirm the antiviral activity found for Echinacea in vitro, embracing enveloped respiratory pathogens and therefore coronaviruses as well. Substantiating results from a new, completed study seem to extrapolate these effects to the prevention of SARS-CoV-2 infections. As hypothesized, the established broad antiviral activity of Echinacea extract appears to be inclusive for SARS-CoV-2.

5.
Biomedicines ; 11(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36672513

ABSTRACT

The aim of this review is to provide the reader with a general overview on the rationale for the use of melatonin by military personnel. This is a technique that is being increasingly employed to manage growing psycho-physical loads. In this context, melatonin, a pleotropic and regulatory molecule, has a potential preventive and therapeutic role in maintaining the operational efficiency of military personnel. In battlefield conditions in particular, the time to treatment after an injury is often a major issue since the injured may not have immediate access to medical care. Any drug that would help to stabilize a wounded individual, especially if it can be immediately administered (e.g., per os) and has a very high safety profile over a large range of doses (as melatonin does) would be an important asset to reduce morbidity and mortality. Melatonin may also play a role in the oscillatory synchronization of the neuro-cardio-respiratory systems and, through its epigenetic action, poses the possibility of restoring the main oscillatory waves of the cardiovascular system, such as the Mayer wave and RSA (respiratory sinus arrhythmia), which, in physiological conditions, result in the oscillation of the heartbeat in synchrony with the breath. In the future, this could be a very promising field of investigation.

SELECTION OF CITATIONS
SEARCH DETAIL
...