Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 9(5)2021 May 10.
Article in English | MEDLINE | ID: mdl-34068663

ABSTRACT

The emergence of extended-spectrum ß-lactamase (ESBL)-producing multidrug resistant Klebsiella pneumoniae causing community urinary tract infections (CA-UTI) in healthy women undermines effective treatment and poses a public health concern. We performed a comprehensive genomic analysis (Illumina and MinION) and virulence studies using Caenorhabditis elegans nematodes to evaluate KpnU95, a blaCTX-M-15-producing CA-UTI K. pneumoniae strain. Whole genome sequencing identified KpnU95 as sequence type 1412 and revealed the chromosomal and plasmid-encoding resistome, virulome and persistence features. KpnU95 possess a wide virulome and caused complete C. elegans killing. The strain harbored a single novel 180.3Kb IncFIB(K) plasmid (pKpnU95), which encodes ten antibiotic resistance genes, including blaCTX-M-15 and qnrS1 alongside a wide persistome encoding heavy metal and UV resistance. Plasmid curing and reconstitution were used for loss and gain studies to evaluate its role on bacterial resistance, fitness and virulence. Plasmid curing abolished the ESBL phenotype, decreased ciprofloxacin MIC and improved bacterial fitness in artificial urine accompanied with enhanced copper tolerance, without affecting bacterial virulence. Meta-analysis supported the uniqueness of pKpnU95 and revealed plasmid-ST1412 lineage adaptation. Overall, our findings provide translational data on a CA-UTI K. pneumoniae ST1412 strain and demonstrates that ESBL-encoding plasmids play key roles in multidrug resistance and in bacterial fitness and persistence.

2.
Acta Biomater ; 125: 231-241, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33607306

ABSTRACT

The race drawn against bacteria facing the evolution of antimicrobial resistance fuels research for new drugs and therapeutic strategies. FKF, a tripeptide that is cationic and amphiphilic was examined in light of its potential antimicrobial activity. Acid titration of purified peptide solution, 6% w/v (136 mM), yielded a hydrogel at pH~ 4. Cryo-TEM images of FKF revealed distinct phases formed upon increase in pH, ranging from elongated needles, uniform width fibers, sheets and tubular structures. 1H NMR attested FKF charged states as function of pH, and CD and FTIR measurements indicated that FKF ß-sheet assemblies are held by both π-π stacking and H-bonds. FKF hydrogel displayed bactericidal activity against E. coli and P. aeruginosa with a 3-log reduction in bacterial counts. The hydrogel was also found effective in reducing P. aeruginosa contamination in a skin lesion model in rats. FKF forms a unique antimicrobial peptide-hydrogel, showing neglectable effect in dissolved state, yet only when fibrillary assembled it gains functionality. STATEMENT OF SIGNIFICANCE: Ultra-short peptides are at the frontier of peptide self-assembly research. The tripeptide FKF assumes distinct assembly forms that are a function of pH, for which we have pinpointed the accompanying changes in charge. Made of natural amino acids, FKF forms a pure peptide hydrogel phase, which is intrinsically antimicrobial. We demonstrate that antimicrobial effect is only assumed by the peptide assemblies, posing self-assembly as a pre-requisite for FKF's bactericidal effect. This system provides evidence for the link between specific microscopic peptide assembled structures, macroscopic gel formation and antimicrobial effect, utilized to alleviate bacterial contamination in vivo.


Subject(s)
Anti-Infective Agents , Escherichia coli , Animals , Anti-Bacterial Agents/pharmacology , Peptides , Protein Conformation, beta-Strand , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...