Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Sci ; 176(2): 329-342, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32458970

ABSTRACT

Basimglurant (RG7090), a small molecule under development to treat certain forms of depression, demonstrated foci of altered hepatocytes in a long-term rodent-toxicity study. Additional evidence pointed toward the activation of the constitutive androstane receptor (CAR), an established promoter of nongenotoxic and rodent-specific hepatic tumors. This mode of action and the potential human relevance was explored in vivo using rodent and cynomolgus monkey models and in vitro using murine and human liver spheroids. Wild type (WT) and CAR/pregnane X receptor (PXR) knockout mice (CAR/PXR KO) were exposed to RG7090 for 8 consecutive days. Analysis of liver lysates revealed induction of Cyp2b mRNA and enzyme activity, a known activation marker of CAR, in WT but not in CAR/PXR KO animals. A series of proliferative genes were upregulated in WT mice only, and immunohistochemistry data showed increased cell proliferation exclusively in WT mice. In addition, primary mouse liver spheroids were challenged with RG7090 in the presence or absence of modified antisense oligonucleotides inhibiting CAR and/or PXR mRNA, showing a concentration-dependent Cyp2b mRNA induction only if CAR was not repressed. On the contrary, neither human liver spheroids nor cynomolgus monkeys exposed to RG7090 triggered CYP2B mRNA upregulation. Our data suggested RG7090 to be a rodent-specific CAR activator, and that CAR activation and its downstream processes were involved in the foci of altered hepatocytes formation detected in vivo. Furthermore, we demonstrated the potential of a new in vitro approach using liver spheroids and antisense oligonucleotides for CAR knockdown experiments, which could eventually replace in vivo investigations using CAR/PXR KO mice.


Subject(s)
Imidazoles/pharmacology , Pyridines/pharmacology , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Steroid , Animals , Constitutive Androstane Receptor , Hepatocytes , Humans , Liver , Macaca fascicularis , Mice , Mice, Inbred C57BL , Organoids
2.
Basic Clin Pharmacol Toxicol ; 111(1): 50-7, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22309322

ABSTRACT

Oseltamivir is widely used for the treatment and prophylaxis of influenza. Renewed interest in the central nervous system (CNS) tolerability profile of oseltamivir has been triggered by the reports of neuropsychiatric adverse events in patients with influenza. In addition, a recent pre-clinical study in rodents suggested a hypothermic effect of oseltamivir. The current studies investigated the CNS effects, body temperature effect and toxicokinetic profile of oseltamivir in rats. The CNS/temperature study included three groups receiving oseltamivir (500, 763 and 1000 mg/kg free base by oral gavage), one vehicle/control group and one reference group (D-amphetamine, 10 mg/kg). CNS parameters (behaviour, motor activity and co-ordination and sensory/motor reflex responses) and rectal temperature were measured at baseline and at five intervals until 8 hr after dosing. In the toxicokinetic study, rats received oseltamivir by oral gavage at 763 or 1000 mg/kg free base. Plasma, cerebrospinal fluid (CSF) and perfused brain concentrations of oseltamivir and its active metabolite, oseltamivir carboxylate (OC), were measured until 8 hr after dosing. Median scores for CNS parameters were similar in controls and animals receiving oseltamivir at all time points. Oseltamivir had no physiologically relevant effect on body temperature, but induced a short-lived and small dose-independent decrease in temperature in all active treatment groups at 1 hr after dosing only. Plasma concentrations of OC were higher than of oseltamivir, but the reverse was true in CSF and brain. CNS penetration was low for both moieties. In rats, oseltamivir at supratherapeutic doses up to 1000 mg/kg free base did not exert any effects on CNS function or hypothermic effects and led to limited CNS exposure, resulting in large safety margins.


Subject(s)
Antiviral Agents/administration & dosage , Central Nervous System/drug effects , Dose-Response Relationship, Drug , Hypothermia , Oseltamivir/administration & dosage , Administration, Oral , Animals , Antiviral Agents/adverse effects , Antiviral Agents/blood , Antiviral Agents/cerebrospinal fluid , Body Temperature/drug effects , Body Weight/drug effects , Brain/metabolism , Drug-Related Side Effects and Adverse Reactions/metabolism , Male , Oseltamivir/adverse effects , Oseltamivir/analogs & derivatives , Oseltamivir/blood , Oseltamivir/cerebrospinal fluid , Rats , Rats, Sprague-Dawley
4.
Anticancer Drugs ; 15(5): 503-12, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15166626

ABSTRACT

Our objective was the preclinical assessment of the pharmacokinetics, monotherapy and combined antitumor activity of the epidermal growth factor receptor (HER1/EGFR) tyrosine kinase inhibitor erlotinib in athymic nude mice bearing non-small cell lung cancer (NSCLC) xenograft models. Immunohistochemistry determined the HER1/EGFR status of the NSCLC tumor models. Pharmacokinetic studies assessed plasma drug concentrations of erlotinib in tumor- and non-tumor-bearing athymic nude mice. These were followed by maximum tolerated dose (MTD) studies for erlotinib and each chemotherapy. Erlotinib was then assessed alone and in combination with these chemotherapies in the NSCLC xenograft models. Complete necropsies were performed on most of the animals in each study to further assess antitumor or toxic effects. Erlotinib monotherapy dose-dependently inhibited tumor growth in the H460a tumor model, correlating with circulating levels of drug. There was antitumor activity at the MTD with each agent tested in both the H460a and A549 tumor models (erlotinib 100 mg/kg: 71 and 93% tumor growth inhibition; gemcitabine 120 mg/kg: 93 and 75% tumor growth inhibition; cisplatin 6 mg/kg: 81 and 88% tumor growth inhibition). When each compound was given at a fraction of the MTD, tumor growth inhibition was suboptimal. Combinations of gemcitabine or cisplatin with erlotinib were assessed at 25% of the MTD to determine efficacy. In both NSCLC models, doses of gemcitabine (30 mg/kg) or cisplatin (1.5 mg/kg) with erlotinib (25 mg/kg) at 25% of the MTD were well tolerated. For the slow growing A549 tumor, there was significant tumor growth inhibition in the gemcitabine/erlotinib and cisplatin/erlotinib combinations (above 100 and 98%, respectively), with partial regressions. For the faster growing H460a tumor, there was significant but less remarkable tumor growth inhibition in these same combinations (86 and 53% respectively). These results show that in NSCLC xenograft tumors with similar levels of EGFR expression, the antitumor activity of erlotinib is robust both as monotherapy and in combination with chemotherapies.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Deoxycytidine/analogs & derivatives , Lung Neoplasms/drug therapy , Quinazolines/therapeutic use , Animals , Antimetabolites, Antineoplastic/administration & dosage , Antineoplastic Agents/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cisplatin/administration & dosage , Deoxycytidine/administration & dosage , ErbB Receptors/antagonists & inhibitors , Erlotinib Hydrochloride , Female , Humans , Lung Neoplasms/pathology , Mice , Mice, Nude , Quinazolines/administration & dosage , Time Factors , Xenograft Model Antitumor Assays , Gemcitabine
SELECTION OF CITATIONS
SEARCH DETAIL
...