Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 19(3): e1011010, 2023 03.
Article in English | MEDLINE | ID: mdl-36996234

ABSTRACT

Predicting protein-protein interactions from sequences is an important goal of computational biology. Various sources of information can be used to this end. Starting from the sequences of two interacting protein families, one can use phylogeny or residue coevolution to infer which paralogs are specific interaction partners within each species. We show that these two signals can be combined to improve the performance of the inference of interaction partners among paralogs. For this, we first align the sequence-similarity graphs of the two families through simulated annealing, yielding a robust partial pairing. We next use this partial pairing to seed a coevolution-based iterative pairing algorithm. This combined method improves performance over either separate method. The improvement obtained is striking in the difficult cases where the average number of paralogs per species is large or where the total number of sequences is modest.


Subject(s)
Algorithms , Proteins , Protein Binding , Phylogeny , Proteins/chemistry , Computational Biology/methods
2.
Phys Rev E ; 101(3-1): 032413, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32290011

ABSTRACT

Identifying protein-protein interactions is crucial for a systems-level understanding of the cell. Recently, algorithms based on inverse statistical physics, e.g., direct coupling analysis (DCA), have allowed to use evolutionarily related sequences to address two conceptually related inference tasks: finding pairs of interacting proteins and identifying pairs of residues which form contacts between interacting proteins. Here we address two underlying questions: How are the performances of both inference tasks related? How does performance depend on dataset size and the quality? To this end, we formalize both tasks using Ising models defined over stochastic block models, with individual blocks representing single proteins and interblock couplings protein-protein interactions; controlled synthetic sequence data are generated by Monte Carlo simulations. We show that DCA is able to address both inference tasks accurately when sufficiently large training sets of known interaction partners are available and that an iterative pairing algorithm allows to make predictions even without a training set. Noise in the training data deteriorates performance. In both tasks we find a quadratic scaling relating dataset quality and size that is consistent with noise adding in square-root fashion and signal adding linearly when increasing the dataset. This implies that it is generally good to incorporate more data even if their quality are imperfect, thereby shedding light on the empirically observed performance of DCA applied to natural protein sequences.


Subject(s)
Models, Biological , Protein Interaction Maps , Proteins/metabolism , Monte Carlo Method
SELECTION OF CITATIONS
SEARCH DETAIL
...