Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(39): e2300040, 2023 09.
Article in English | MEDLINE | ID: mdl-37264756

ABSTRACT

The programmable nature of DNA allows the construction of custom-designed static and dynamic nanostructures, and assembly conditions typically require high concentrations of magnesium ions that restricts their applications. In other solution conditions tested for DNA nanostructure assembly, only a limited set of divalent and monovalent ions are used so far (typically Mg2+ and Na+ ). Here, we investigate the assembly of DNA nanostructures in a wide variety of ions using nanostructures of different sizes: a double-crossover motif (76 bp), a three-point-star motif (~134 bp), a DNA tetrahedron (534 bp) and a DNA origami triangle (7221 bp). We show successful assembly of a majority of these structures in Ca2+ , Ba2+ , Na+ , K+ and Li+ and provide quantified assembly yields using gel electrophoresis and visual confirmation of a DNA origami triangle using atomic force microscopy. We further show that structures assembled in monovalent ions (Na+ , K+ and Li+ ) exhibit up to a 10-fold higher nuclease resistance compared to those assembled in divalent ions (Mg2+ , Ca2+ and Ba2+ ). Our work presents new assembly conditions for a wide range of DNA nanostructures with enhanced biostability.


Subject(s)
Nanostructures , Nanotechnology , Nanotechnology/methods , Nucleic Acid Conformation , Nanostructures/chemistry , DNA/chemistry , Cations
2.
bioRxiv ; 2023 May 04.
Article in English | MEDLINE | ID: mdl-37205441

ABSTRACT

The programmable nature of DNA allows the construction of custom-designed static and dynamic nanostructures, and assembly conditions typically require high concentrations of magnesium ions which restricts their applications. In other solution conditions tested for DNA nanostructure assembly, only a limited set of divalent and monovalent ions have been used so far (typically Mg 2+ and Na + ). Here, we investigate the assembly of DNA nanostructures in a wide variety of ions using nanostructures of different sizes: a double-crossover motif (76 bp), a three-point-star motif (∼134 bp), a DNA tetrahedron (534 bp) and a DNA origami triangle (7221 bp). We show successful assembly of a majority of these structures in Ca 2+ , Ba 2+ , Na + , K + and Li + and provide quantified assembly yields using gel electrophoresis and visual confirmation of a DNA origami triangle using atomic force microscopy. We further show that structures assembled in monovalent ions (Na + , K + and Li + ) exhibit up to a 10-fold higher nuclease resistance compared to those assembled in divalent ions (Mg 2+ , Ca 2+ and Ba 2+ ). Our work presents new assembly conditions for a wide range of DNA nanostructures with enhanced biostability.

3.
Commun Chem ; 6(1): 91, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37156998

ABSTRACT

Robust localization of self-reproducing autocatalytic chemistries is a key step in the realization of heritable and evolvable chemical systems. While autocatalytic chemical reaction networks already possess attributes such as heritable self-reproduction and evolvability, localizing functional multispecies networks within complex primitive phases, such as coacervates, has remained unexplored. Here, we show the self-reproduction of the Azoarcus ribozyme system within charge-rich coacervates where catalytic ribozymes are produced by the autocatalytic assembly of constituent smaller RNA fragments. We systematically demonstrate the catalytic assembly of active ribozymes within phase-separated coacervates-both in micron-sized droplets as well as in a coalesced macrophase, underscoring the facility of the complex, charge-rich phase to support these reactions in multiple configurations. By constructing multispecies reaction networks, we show that these newly assembled molecules are active, participating both in self- and cross-catalysis within the coacervates. Finally, due to differential molecular transport, these phase-separated compartments endow robustness to the composition of the collectively autocatalytic networks against external perturbations. Altogether, our results establish the formation of multispecies self-reproducing reaction networks in phase-separated compartments which in turn render transient robustness to the network composition.

4.
Science ; 375(6585): 1089-1090, 2022 03 11.
Article in English | MEDLINE | ID: mdl-35271310

ABSTRACT

Natural dynein protein motors are reengineered to walk on specific artificial DNA tracks.


Subject(s)
Dyneins , Shoes , DNA , Dyneins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...