Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem J ; 319 ( Pt 2): 463-9, 1996 Oct 15.
Article in English | MEDLINE | ID: mdl-8912682

ABSTRACT

Cytoplasmic ATP can be measured continuously in single cardiac myocytes by monitoring the luminescence from microinjected firefly luciferase. We show here that the signals are markedly influenced by changes in cytoplasmic pH, and the calibration of the signals as ATP concentration is markedly affected by cytoplasmic protein. Measurements with a pH-sensitive fluorescent dye show that intracellular pH (pHi) can be clamped at pH 7.08 by perfusing cells with a modified bicarbonate-buffered Krebs saline containing 92 mM NaHCO3 and equilibrated with 20% CO2. Calibration of the firefly luciferase signal in vitro in the presence of high concentrations of BSA (180 mg/ml), to simulate the cytoplasmic protein concentration, revealed a shift in Km (ATP) to 2 mM, from approx. 400 microM in the absence of albumin in an identical ionic milieu. Luciferase measurements in pH-clamped cells show that metabolically poisoned isolated rat ventricle cardiomyocytes enter rigor at a cytoplasmic ATP concentration of between 1 and 2 mM. As the cells shorten in rigor, a process that is complete in 30-40 s, the cytoplasmic ATP concentration falls simultaneously to a level of typically 20 microM. When cyanide is removed 10 min later, to simulate reoxygenation, the signal recovers over a period of 2-3 min to a level approx. 70% of the original in the healthy cell. These studies indicate that rigor-mediated depletion of cytoplasmic ATP in metabolically poisoned cardiomyocytes is considerably more extreme than hitherto indicated.


Subject(s)
Adenosine Triphosphate/metabolism , Myocardium/metabolism , Animals , Cells, Cultured , Cytoplasm/metabolism , Hydrogen-Ion Concentration , Myocardial Contraction , Rats , Rats, Wistar
2.
J Biolumin Chemilumin ; 9(6): 363-71, 1994.
Article in English | MEDLINE | ID: mdl-7879652

ABSTRACT

In order to improve calibration of firefly luciferase signals obtained by injecting the enzyme into single, isolated heart and liver cells we have investigated why the luminescence from cells is greatly depressed compared with in vitro (in mammalian ionic milieu) and why the decay of the intracellular signal is remarkably slow. We have shown that inorganic pyrophosphatase greatly depresses the signal in vitro and that micromolar concentrations of inorganic pyrophosphate, comparable with that in cytoplasm, reverse this inhibition and stabilize the signal, eliminating its decay. Higher concentrations of pyrophosphate depress the signal by inhibiting ATP-binding to luciferase. Luciferase-injected cells exposed to extracellular luciferin concentrations above about 100 mumol/l (corresponding to a cytoplasmic level of c. 5-10 mumol/l because of a transplasmalemmal gradient) show a gradual, irreversible loss of signal. We attribute this phenomenon (which is not seen in vitro) to the gradual accumulation of a luminescently inactive, irreversible, luciferase-oxyluciferin complex. At low luciferin levels this complex is prevented from forming by cytoplasmic pyrophosphate. Above c. 100 mumol/l extracellular luciferin, the pyrophosphate level in the cytoplasm fails to fully prevent the complex forming. In vitro this phenomenon does not occur because the luciferase concentrations and hence oxyluciferin levels are orders of magnitude lower than in cells injected with concentrated luciferase solutions, which have a cytoplasmic luciferase concentration of approximately 2-4 mumol/l.


Subject(s)
Luciferases/metabolism , Luminescent Measurements , Animals , Cell Membrane/metabolism , Cytoplasm/metabolism , Diphosphates/metabolism , Diphosphates/pharmacology , Enzyme Stability/drug effects , Firefly Luciferin/metabolism , Firefly Luciferin/pharmacology , In Vitro Techniques , Kinetics , Luciferases/administration & dosage , Luciferases/antagonists & inhibitors , Microinjections , Myocardium/cytology , Myocardium/metabolism , Pyrophosphatases/antagonists & inhibitors , Pyrophosphatases/pharmacology , Rats , Sodium Fluoride/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...