Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Lett Appl Microbiol ; 75(6): 1628-1638, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36067038

ABSTRACT

The present study was aimed to elucidate the host-virus interactions using RNA-Seq analysis at 1 h and 8 h of post-infection of sheeppox virus (SPPV) in lamb testis cell. The differentially expressed genes (DEGs) and the underlying mechanisms linked to the host immune responses were obtained. The protein-protein interaction (PPI) network analysis and ingenuity pathway analysis (IPA) illustrated the interaction between the DEGs and their involvement in cell signalling responses. Highly connected hubs viz. AURKA, CHEK1, CCNB2, CDC6 and MAPK14 were identified through PPI network analysis. IPA analysis showed that IL-6- and ERK5-mediated signalling pathways were highly enriched at both time points. The TP53 gene was identified to be the leading upstream regulator that directly responded to SPPV infection, resulting in downregulation at both time points. The study provides an overview of how the lamb testis genes and their underlying mechanisms link to growth and immune response during SPPV infection.


Subject(s)
Capripoxvirus , Poxviridae Infections , Sheep Diseases , Male , Sheep , Animals , Testis , Poxviridae Infections/veterinary , Capripoxvirus/genetics , Transcriptome , Gene Expression Profiling
2.
Vet World ; 14(3): 803-812, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33935431

ABSTRACT

BACKGROUND AND AIM: The present serodiagnosis of brucellosis in livestock is based on the whole cell or smooth lipopolysaccharide of the Brucella organism in which specificity is hampered by the cross-reactivity, especially with the antibodies against Yersinia enterocolitica O:9 organism. The problem can be addressed by screening for better immunodominant antigens. Hence, the present study was undertaken to screen protein antigens of Brucella abortus for their diagnostic potential in cattle brucellosis. MATERIALS AND METHODS: Protein antigens of B. abortus (n=10) non-reactive to antibodies against Y. enterocolitica O:9 were selected, expressed in Escherichia coli, assessed the reactivity of expressed recombinant proteins by Western blot, standardized indirect-enzyme-linked immunosorbent assay (ELISA) for detecting Brucella antibodies in cattle serum, and comparative evaluation was done. RESULTS: All the selected protein antigens were expressed and in the Western blot with Brucella antibodies positive cattle serum, six recombinant (Brucella protein 26 [BP26], Cu-Zn Superoxide dismutase [SodC], B. abortus I-1885, Serine protease, Bacterioferritin, and Brucella Lumazine Synthase [BLS]) proteins showed reaction whereas none of the proteins showed reactivity with Brucella negative cattle serum. ELISA has been done using known Brucella positive and negative cattle sera samples (n=113 each) in which the performance of recombinant proteins in diagnosing brucellosis was in the order of BP26 > BLS > SodC followed by rest of the proteins. BP26 based ELISA was found to be better with area under the curve as 0.953, and diagnostic sensitivity, diagnostic specificity, and Youden's index of 90.27%, 95.58%, and 0.8584, respectively, with the excellent agreement (k=0.85). CONCLUSION: BP26 could be a potential diagnostic antigen among the immunodominant proteins of B. abortus in ruling out Y. enterocolitica O:9 infection while diagnosing brucellosis in cattle herds.

3.
Transbound Emerg Dis ; 66(3): 1252-1267, 2019 May.
Article in English | MEDLINE | ID: mdl-30725534

ABSTRACT

Canine distemper (CD) is one of the highly contagious and invariably fatal viral diseases of dogs and other carnivores. Despite the widespread use of modified live vaccines to control CD, the prevalence of disease has increased at an alarming rate in recent years. Although a number of factors may be ascribed for vaccine failure, antigenic differences among the vaccine and wild-type strains have gained the interest of researchers. Considering the high genetic variability of haemagglutinin gene (H gene) and its role in eliciting the immune response to canine distemper virus (CDV), we have generated nine full-length CDV H gene sequences from infected dogs including three vaccinated cases. Bayesian analysis was performed using 102 full-length H gene nucleotide sequences over a time frame of 76 years (1940-2016) from 18 countries. The time to the most recent common ancestor (tMRCA) of CDV was estimated to be 1696 AD. Phylogenetic reconstruction clustered Indian wild-type viruses into a distinct monophyletic group clearly separated from the previously established CDV lineages. This signifies the presence of a novel genetic variant (proposed as "Lineage India-1/Asia-5") circulating among dog population in India. To investigate the importance of substitutions at amino acid residues 530 and 549 of CDV H protein in determining the host switches from canid to non-canid hosts, we analysed 125 H gene sequences including nine sequences generated in this study. Selection pressure analysis and analysis of amino acid sequences revealed a trend towards adaptation of 549H variants in non-canid hosts although no role of G/E530R/D/N substitution could be identified. This is the first comprehensive study about the nature and ecology of CDV circulating among dog population in India. Outbreaks in vaccinated animals as observed in this study have raised a concern towards the effectiveness of current vaccine strains warranting detailed investigation.


Subject(s)
Distemper Virus, Canine/genetics , Distemper/virology , Genetic Variation , Hemagglutinins/genetics , Amino Acid Sequence , Animals , Bayes Theorem , Carnivora , Distemper/epidemiology , Dogs , India/epidemiology , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...