Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Circ Res ; 120(11): 1776-1788, 2017 May 26.
Article in English | MEDLINE | ID: mdl-28325781

ABSTRACT

RATIONALE: 20-Hydroxyeicosatetraenoic acid (20-HETE), one of the principle cytochrome P450 eicosanoids, is a potent vasoactive lipid whose vascular effects include stimulation of smooth muscle contractility, migration, and proliferation, as well as endothelial cell dysfunction and inflammation. Increased levels of 20-HETE in experimental animals and in humans are associated with hypertension, stroke, myocardial infarction, and vascular diseases. OBJECTIVE: To date, a receptor/binding site for 20-HETE has been implicated based on the use of specific agonists and antagonists. The present study was undertaken to identify a receptor to which 20-HETE binds and through which it activates a signaling cascade that culminates in many of the functional outcomes attributed to 20-HETE in vitro and in vivo. METHODS AND RESULTS: Using crosslinking analogs, click chemistry, binding assays, and functional assays, we identified G-protein receptor 75 (GPR75), currently an orphan G-protein-coupled receptor (GPCR), as a specific target of 20-HETE. In cultured human endothelial cells, 20-HETE binding to GPR75 stimulated Gαq/11 protein dissociation and increased inositol phosphate accumulation and GPCR-kinase interacting protein-1-GPR75 binding, which further facilitated the c-Src-mediated transactivation of epidermal growth factor receptor. This results in downstream signaling pathways that induce angiotensin-converting enzyme expression and endothelial dysfunction. Knockdown of GPR75 or GPCR-kinase interacting protein-1 prevented 20-HETE-mediated endothelial growth factor receptor phosphorylation and angiotensin-converting enzyme induction. In vascular smooth muscle cells, GPR75-20-HETE pairing is associated with Gαq/11- and GPCR-kinase interacting protein-1-mediated protein kinase C-stimulated phosphorylation of MaxiKß, linking GPR75 activation to 20-HETE-mediated vasoconstriction. GPR75 knockdown in a mouse model of 20-HETE-dependent hypertension prevented blood pressure elevation and 20-HETE-mediated increases in angiotensin-converting enzyme expression, endothelial dysfunction, smooth muscle contractility, and vascular remodeling. CONCLUSIONS: This is the first report to identify a GPCR target for an eicosanoid of this class. The discovery of 20-HETE-GPR75 pairing presented here provides the molecular basis for the signaling and pathophysiological functions mediated by 20-HETE in hypertension and cardiovascular diseases.


Subject(s)
Endothelium, Vascular/physiology , Hydroxyeicosatetraenoic Acids/metabolism , Hypertension/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology , Vascular Remodeling/physiology , Animals , Cells, Cultured , Endothelium, Vascular/drug effects , Humans , Hydroxyeicosatetraenoic Acids/pharmacology , Hydroxyeicosatetraenoic Acids/toxicity , Hypertension/chemically induced , Male , Mice , Mice, Transgenic , Protein Binding/physiology , Rats , Signal Transduction/drug effects , Vascular Remodeling/drug effects
2.
Org Lett ; 17(4): 1058-61, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-25668127

ABSTRACT

Ti(IV)-salan 4 catalyzes the diastereo- and enantioselective monoepoxidation of conjugated dienes using 30% H2O2 at rt or below even in the presence of other olefins and adjacent stereocenters. Its enantiomer, ent-4, provides access to the opposite diastereomer or enantiomer. The resultant chiral allylic epoxides, and the triols derived from them, are versatile synthetic intermediates as well as substructures present in many bioactive natural products. The epoxidation is highly specific for Z-olefins. For 1-acyl(silyl)oxypenta-2,4-dienes, epoxidation of the distal olefin is generally favored in contrast to the adjacent regioselectivity characteristic of Sharpless, peracid, and other directed epoxidations of hydroxylated dienes.


Subject(s)
Alkadienes/chemistry , Epoxy Compounds/chemical synthesis , Alkadienes/chemical synthesis , Biological Products/chemistry , Catalysis , Combinatorial Chemistry Techniques , Epoxy Compounds/chemistry , Hydrogen Peroxide/chemistry , Molecular Structure , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...