Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 27(1): 115-128.e5, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30943395

ABSTRACT

During development, oligodendrocyte progenitor cells (OPCs) migrate extensively throughout the spinal cord. However, their migration is restricted at transition zones (TZs). At these specialized locations, unique glial cells in both zebrafish and mice play a role in preventing peripheral OPC migration, but the mechanisms of this regulation are not understood. To elucidate the mechanisms that mediate OPC segregation at motor exit point (MEP) TZs, we performed an unbiased small-molecule screen. Using chemical screening and in vivo imaging, we discovered that inhibition of A2a adenosine receptors (ARs) causes ectopic OPC migration out of the spinal cord. We provide in vivo evidence that neuromodulation, partially mediated by adenosine, influences OPC migration specifically at the MEP TZ. This work opens exciting possibilities for understanding how OPCs reach their final destinations during development and identifies mechanisms that could promote their migration in disease.


Subject(s)
Adenosine/pharmacology , Cell Movement/drug effects , Motor Endplate/embryology , Neurotransmitter Agents/pharmacology , Oligodendroglia/drug effects , Spinal Cord/embryology , Animals , Animals, Genetically Modified , Body Patterning/physiology , Cell Differentiation/drug effects , Embryo, Nonmammalian , Female , Male , Motor Endplate/cytology , Motor Neurons/drug effects , Motor Neurons/physiology , Oligodendroglia/physiology , Spinal Cord/cytology , Spinal Cord/drug effects , Stem Cells/drug effects , Stem Cells/physiology , Zebrafish/embryology
2.
Development ; 142(6): 1113-24, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25725064

ABSTRACT

Loss of neurons that express the neuropeptide hypocretin (Hcrt) has been implicated in narcolepsy, a debilitating disorder characterized by excessive daytime sleepiness and cataplexy. Cell replacement therapy, using Hcrt-expressing neurons generated in vitro, is a potentially useful therapeutic approach, but factors sufficient to specify Hcrt neurons are unknown. Using zebrafish as a high-throughput system to screen for factors that can specify Hcrt neurons in vivo, we identified the LIM homeobox transcription factor Lhx9 as necessary and sufficient to specify Hcrt neurons. We found that Lhx9 can directly induce hcrt expression and we identified two potential Lhx9 binding sites in the zebrafish hcrt promoter. Akin to its function in zebrafish, we found that Lhx9 is sufficient to specify Hcrt-expressing neurons in the developing mouse hypothalamus. Our results elucidate an evolutionarily conserved role for Lhx9 in Hcrt neuron specification that improves our understanding of Hcrt neuron development.


Subject(s)
Cell Separation/methods , Gene Expression Regulation/physiology , Hypothalamus/embryology , Intracellular Signaling Peptides and Proteins/metabolism , Neurons/metabolism , Neuropeptides/metabolism , Transcription Factors/metabolism , Zebrafish Proteins/metabolism , Animals , Animals, Genetically Modified , Cloning, Molecular , DNA Primers/genetics , Electrophoretic Mobility Shift Assay , Gene Knockdown Techniques , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , High-Throughput Screening Assays/methods , Hypothalamus/metabolism , Immunohistochemistry , Mice , Microarray Analysis , Orexins , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/genetics , Zebrafish , Zebrafish Proteins/genetics
3.
Neuron ; 85(6): 1193-9, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25754820

ABSTRACT

Sleep is an evolutionarily conserved behavioral state whose regulation is poorly understood. A classical model posits that sleep is regulated by homeostatic and circadian mechanisms. Several factors have been implicated in mediating the homeostatic regulation of sleep, but molecules underlying the circadian mechanism are unknown. Here we use animals lacking melatonin due to mutation of arylalkylamine N-acetyltransferase 2 (aanat2) to show that melatonin is required for circadian regulation of sleep in zebrafish. Sleep is dramatically reduced at night in aanat2 mutants maintained in light/dark conditions, and the circadian regulation of sleep is abolished in free-running conditions. We find that melatonin promotes sleep downstream of the circadian clock as it is not required to initiate or maintain circadian rhythms. Additionally, we provide evidence that melatonin may induce sleep in part by promoting adenosine signaling, thus potentially linking circadian and homeostatic control of sleep.


Subject(s)
Circadian Rhythm/physiology , Melatonin/metabolism , Sleep/physiology , Zebrafish/physiology , Animals , Animals, Genetically Modified/genetics , Arylalkylamine N-Acetyltransferase/genetics , Circadian Clocks/genetics , Circadian Rhythm/genetics , Genotype , Light
SELECTION OF CITATIONS
SEARCH DETAIL
...