Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 15760, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31673018

ABSTRACT

Although adenosine and its analogues have been assessed in the past as potential drug candidates due to the important role of adenosine in physiology, only little is known about their absorption following oral administration. In this work, we have studied the oral absorption and disposition pathways of cordycepin, an adenosine analogue. In vitro biopharmaceutical properties and in vivo oral absorption and disposition of cordycepin were assessed in rats. Despite the fact that numerous studies showed efficacy following oral dosing of cordycepin, we found that intact cordycepin was not absorbed following oral administration to rats. However, 3'-deoxyinosine, a metabolite of cordycepin previously considered to be inactive, was absorbed into the systemic blood circulation. Further investigation was performed to study the conversion of 3'-deoxyinosine to cordycepin 5'-triphosphate in vitro using macrophage-like RAW264.7 cells. It demonstrated that cordycepin 5'-triphosphate, the active metabolite of cordycepin, can be formed not only from cordycepin, but also from 3'-deoxyinosine. The novel nucleoside rescue metabolic pathway proposed in this study could be responsible for therapeutic effects of adenosine and other analogues of adenosine following oral administration. These findings may have importance in understanding the physiology and pathophysiology associated with adenosine, as well as drug discovery and development utilising adenosine analogues.


Subject(s)
Deoxyadenosines , Metabolic Networks and Pathways/drug effects , Administration, Oral , Animals , Caco-2 Cells , Deoxyadenosines/pharmacokinetics , Deoxyadenosines/pharmacology , Humans , Male , Mice , RAW 264.7 Cells , Rats , Rats, Sprague-Dawley
2.
Sci Rep ; 9(1): 4696, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30886197

ABSTRACT

Clinically, osteoarthritis (OA) pain is significantly associated with synovial inflammation. Identification of the mechanisms driving inflammation could reveal new targets to relieve this prevalent pain state. Herein, a role of polyadenylation in OA synovial samples was investigated, and the potential of the polyadenylation inhibitor cordycepin (3' deoxyadenosine) to inhibit inflammation as well as to reduce pain and structural OA progression were studied. Joint tissues from people with OA with high or low grade inflammation and non-arthritic post-mortem controls were analysed for the polyadenylation factor CPSF4 and inflammatory markers. Effects of cordycepin on pain behavior and joint pathology were studied in models of OA (intra-articular injection of monosodium iodoacetate in rats and surgical destabilisation of the medial meniscus in mice). Human monocyte-derived macrophages and a mouse macrophage cell line were used to determine effects of cordycepin on nuclear localisation of the inflammatory transcription factor NFĸB and polyadenylation factors (WDR33 and CPSF4). CPSF4 and NFκB expression were increased in synovia from OA patients with high grade inflammation. Cordycepin reduced pain behaviour, synovial inflammation and joint pathology in both OA models. Stimulation of macrophages induced nuclear localisation of NFĸB and polyadenylation factors, effects inhibited by cordycepin. Knockdown of polyadenylation factors also prevented nuclear localisation of NFĸB. The increased expression of polyadenylation factors in OA synovia indicates a new target for analgesia treatments. This is supported by the finding that polyadenylation factors are required for inflammation in macrophages and by the fact that the polyadenylation inhibitor cordycepin attenuates pain and pathology in models of OA.


Subject(s)
Arthritis, Experimental/drug therapy , Inflammation/drug therapy , Joints/pathology , Osteoarthritis/drug therapy , Pain/drug therapy , Animals , Deoxyadenosines/therapeutic use , Disease Models, Animal , Humans , Joints/drug effects , Mice , NF-kappa B/metabolism , Polyadenylation , Rats , Signal Transduction
3.
Transl Res ; 174: 140-160.e14, 2016 08.
Article in English | MEDLINE | ID: mdl-27083388

ABSTRACT

Disturbances in acid-base balance, such as acidosis and alkalosis, have potential to alter the pharmacologic and toxicologic outcomes of statin therapy. Statins are commonly prescribed for elderly patients who have multiple comorbidities such as diabetes mellitus, cardiovascular, and renal diseases. These patients are at risk of developing acid-base imbalance. In the present study, the effect of disturbances in acid-base balance on the interconversion of simvastatin and pravastatin between lactone and hydroxy acid forms have been investigated in physiological buffers, human plasma, and cell culture medium over pH ranging from 6.8-7.8. The effects of such interconversion on cellular uptake and myotoxicity of statins were assessed in vitro using C2C12 skeletal muscle cells under conditions relevant to acidosis, alkalosis, and physiological pH. Results indicate that the conversion of the lactone forms of simvastatin and pravastatin to the corresponding hydroxy acid is strongly pH dependent. At physiological and alkaline pH, substantial proportions of simvastatin lactone (SVL; ∼87% and 99%, respectively) and pravastatin lactone (PVL; ∼98% and 99%, respectively) were converted to the active hydroxy acid forms after 24 hours of incubation at 37°C. At acidic pH, conversion occurs to a lower extent, resulting in greater proportion of statin remaining in the more lipophilic lactone form. However, pH alteration did not influence the conversion of the hydroxy acid forms of simvastatin and pravastatin to the corresponding lactones. Furthermore, acidosis has been shown to hinder the metabolism of the lactone form of statins by inhibiting hepatic microsomal enzyme activities. Lipophilic SVL was found to be more cytotoxic to undifferentiated and differentiated skeletal muscle cells compared with more hydrophilic simvastatin hydroxy acid, PVL, and pravastatin hydroxy acid. Enhanced cytotoxicity of statins was observed under acidic conditions and is attributed to increased cellular uptake of the more lipophilic lactone or unionized hydroxy acid form. Consequently, our results suggest that comorbidities associated with acid-base imbalance can play a substantial role in the development and potentiation of statin-induced myotoxicity.


Subject(s)
Acid-Base Imbalance/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/toxicity , Muscles/pathology , Animals , Cell Death/drug effects , Cell Differentiation/drug effects , Cell Line , Cell Membrane Permeability/drug effects , Chromatography, High Pressure Liquid , Culture Media , Humans , Hydrogen-Ion Concentration , Hydrolysis , L-Lactate Dehydrogenase/metabolism , Membrane Transport Proteins/metabolism , Mice , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Muscle Development/drug effects , Muscles/drug effects , Plasma/metabolism , Pravastatin/pharmacology , Simvastatin/analogs & derivatives , Simvastatin/pharmacology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...