Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Tissue Eng Part A ; 25(9-10): 693-706, 2019 05.
Article in English | MEDLINE | ID: mdl-30982430

ABSTRACT

IMPACT STATEMENT: This study evaluated the biological activity of hydroxylated derivatives of butyrate as inductors of antimicrobial peptides (AMPs) in murine bone marrow-derived macrophages in vitro. A differential modulation of AMP expression by the hydroxylated derivatives of butyrate is shown. The ability of sodium 4-hydroxybutyrate to upregulate AMP expression through a histone deacetylase inhibitory-independent mechanism, and to promote increased resistance to bacterial contamination in vivo are also shown. The findings provide an alternative for prevention of bacterial contamination of implanted biomaterials. Functionalization of biomaterials with hydroxylated derivatives of butyrate can enhance the endogenous antimicrobial activity of the immune system through increased production of AMPs by host cells, thus providing protection against bacterial contamination.


Subject(s)
Antimicrobial Cationic Peptides/biosynthesis , Bone Marrow Cells/metabolism , Hydroxybutyrates/pharmacology , Macrophages/metabolism , beta-Defensins/biosynthesis , Animals , Mice , Rats , Rats, Sprague-Dawley , Cathelicidins
2.
Tissue Eng Part A ; 24(1-2): 34-46, 2018 01.
Article in English | MEDLINE | ID: mdl-28345417

ABSTRACT

Mounting evidence suggests that site-appropriate loading of implanted extracellular matrix (ECM) bioscaffolds and the surrounding microenvironment is an important tissue remodeling determinant, although the role at the cellular level in ECM-mediated skeletal muscle remodeling remains unknown. This study evaluates crosstalk between progenitor cells and macrophages during mechanical loading in ECM-mediated skeletal muscle repair. Myoblasts were exposed to solubilized ECM bioscaffolds and were mechanically loaded at 10% strain, 1 Hz for 5 h. Conditioned media was collected and applied to bone marrow-derived macrophages followed by immunolabeling for proinflammatory M1-like markers and proremodeling M2-like markers. Macrophages were subjected to the same loading protocol and their secreted products were collected for myoblast migration, proliferation, and differentiation analysis. A mouse hind limb unloading volumetric muscle loss model was used to evaluate the effect of loading upon the skeletal muscle microenvironment after ECM implantation. Animals were sacrificed at 14 or 180 days. Isometric torque production was tested and tissue sections were immunolabeled for macrophage phenotype and muscle fiber content. Results show that loading augments the ability of myoblasts to promote an M2-like macrophage phenotype following exposure to ECM bioscaffolds. Mechanically loaded macrophages promote myoblast chemotaxis and differentiation. Lack of weight bearing impaired muscle remodeling as indicated by Masson's Trichrome stain. Isometric torque was significantly increased following ECM implantation when compared to controls, a response not present in the hind limb-unloaded group. This work provides an important mechanistic insight of the effects of rehabilitation upon ECM-mediated remodeling and could have broader implications in clinical practice, advocating multidisciplinary approaches to regenerative medicine, emphasizing rehabilitation.


Subject(s)
Extracellular Matrix , Muscle, Skeletal/cytology , Tissue Scaffolds/chemistry , Animals , Cell Differentiation/physiology , Cell Line , Cells, Cultured , Macrophages/cytology , Mice , Myoblasts/cytology , Regenerative Medicine
SELECTION OF CITATIONS
SEARCH DETAIL
...