Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Clin Transl Gastroenterol ; 8(2): e73, 2017 Feb 09.
Article in English | MEDLINE | ID: mdl-28181993

ABSTRACT

OBJECTIVES: Obesity is an important risk factor for the development of colorectal cancer (CRC). Although the impact of bariatric surgery on CRC is conflicting, its impact on precursor lesions is unknown. The aim of this study was to determine whether bariatric surgery before index screening colonoscopy is associated with decreased development of colorectal adenomas. METHODS: We performed a retrospective cohort study of bariatric surgery patients who had undergone index, screening colonoscopy at an academic center from 2001 to 2014. Patients who had bariatric surgery at least 1 year before index colonoscopy were compared with those who had surgery after colonoscopy, using multivariable logistic regression to control for presurgical body mass index, sex, gender, race, type of surgery, aspirin use, metformin use, smoking, and age at colonoscopy. RESULTS: One hundred and twenty-five obese individuals who had bariatric surgery before colonoscopy were compared with 223 individuals who had colonoscopy after surgery. Adenomatous polyps were found in 16.8% of individuals who had surgery first vs. 35.5% who had colonoscopy before bariatric surgery (unadjusted odds ratio (OR) 0.37, 95% confidence interval (CI): 0.21-0.64, P=0.0003). After multivariable adjustment, bariatric surgery before index screening colonoscopy was associated with a decreased risk of adenomas at index colonoscopy (adjusted OR 0.37, 95% CI: 0.19-0.69, P=0.002). CONCLUSIONS: Bariatric surgery is associated with a decreased risk of colorectal adenomas in obese individuals without a family history of CRC.

3.
Proc Natl Acad Sci U S A ; 108(11): 4382-7, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21368208

ABSTRACT

Hypoxia is an important regulator of normal and cancer stem cell (CSC) differentiation. Colorectal CSCs from SW1222, LS180, and CCK81 colorectal cancer-derived cell lines are able to differentiate into complex 3D lumen-containing structures in normoxia, whereas in hypoxia, they form undifferentiated dense colonies that have reduced expression of the enterocyte differentiation marker CDX1, lack goblet cell formation, and have increased expression of BMI1 and activated Notch1. Hypoxia increases the clonogenicity of CSCs, which is cumulative as each round of hypoxia enriches for more CSCs. The hypoxic phenotype is reversible, because cells from hypoxic-dense colonies are able to reform differentiated structures when regrown in normoxia. We show that CDX1 is able to stimulate the generation of lumens even in hypoxia and has a negative feedback on BMI1 expression. Knockdown of CDX1 reduces lumen formation but does not affect goblet cell formation, suggesting that enterocytes and goblet cells form from different progenitor cells. Notch inhibition by dibenzazepine (DBZ) allowed CSCs to form goblet cells in both normoxia and hypoxia. Finally, we show that Hif1α, but not CA9, is an important mediator of the effects of hypoxia on the clonogenicity and differentiation of CSCs. In summary, hypoxia maintains the stem-like phenotype of colorectal cell line-derived CSCs and prevents differentiation of enterocytes and goblet cells by regulating CDX1 and Notch1, suggesting that this regulation is an important component of how hypoxia controls the switch between stemness and differentiation in CSCs.


Subject(s)
Cell Lineage , Colorectal Neoplasms/pathology , Neoplastic Stem Cells/pathology , Cell Differentiation , Cell Hypoxia , Cell Line, Tumor , Clone Cells , Colorectal Neoplasms/metabolism , Feedback, Physiological , Fluorescent Antibody Technique , Gene Knockdown Techniques , Goblet Cells/metabolism , Goblet Cells/pathology , Homeodomain Proteins/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neoplastic Stem Cells/metabolism , Nuclear Proteins/metabolism , Phenotype , Polycomb Repressive Complex 1 , Proto-Oncogene Proteins/metabolism , Receptors, Notch/metabolism , Repressor Proteins/metabolism , Signal Transduction , Tumor Stem Cell Assay
4.
Proc Natl Acad Sci U S A ; 107(8): 3722-7, 2010 Feb 23.
Article in English | MEDLINE | ID: mdl-20133591

ABSTRACT

Cancer stem cells (CSCs) are the subpopulation of cells within a tumor that can self-renew, differentiate into multiple lineages, and drive tumor growth. Here we describe a two-pronged approach for the identification and characterization of CSCs from colorectal cancer cell lines, using a Matrigel-based differentiation assay, and cell surface markers CD44 and CD24. About 20 to 30% of cells from the SW1222 cell line form megacolonies in Matrigel that have complex 3D structures resembling colonic crypts. The megacolonies' capacity to self-renew in vitro is direct evidence that they contain the CSCs. Furthermore, just 200 cells from SW1222 megacolonies initiate tumors in NOD/SCID mice. We also showed that CD44(+)CD24(+) cells enriched for colorectal CSCs in the HT29 and SW1222 cell lines, which can self-renew and reform all four CD44/CD24 subpopulations, are the most clonogenic in vitro and can initiate tumors in vivo. A single SW1222 CD44(+)CD24(+) CSC, when grown in Matrigel, can form large megacolonies that differentiate into enterocyte, enteroendocrine, and goblet cell lineages. The HCT116 line does not differentiate or express CDX1, nor does it contain subpopulations of cells with greater tumor-forming capacity, suggesting that HCT116 contains mainly CSCs. However, forced expression of CDX1 in HCT116 leads to reduced clonogenicity and production of differentiating crypt-containing colonies, which can explain the selection for reduced CDX1 expression in many colorectal cancers. In summary, colorectal cancer cell lines contain subpopulations of CSCs, characterized by their cell surface markers and colony morphology, which can self-renew and differentiate into multiple lineages.


Subject(s)
Colorectal Neoplasms/pathology , Neoplastic Stem Cells/pathology , Animals , CD24 Antigen/biosynthesis , Cell Differentiation , Cell Line, Tumor , Cell Separation , Collagen , Drug Combinations , Homeodomain Proteins/biosynthesis , Humans , Hyaluronan Receptors/biosynthesis , Laminin , Mice , Mice, Inbred NOD , Mice, SCID , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/transplantation , Proteoglycans
5.
J Biol Chem ; 283(47): 32650-9, 2008 Nov 21.
Article in English | MEDLINE | ID: mdl-18818202

ABSTRACT

Many immune signaling pathways require activation of the Syk tyrosine kinase to link ligation of surface receptors to changes in gene expression. Despite the central role of Syk in these pathways, the Syk activation process remains poorly understood. In this work we quantitatively characterized the molecular mechanism of Syk activation in vitro using a real time fluorescence kinase assay, mutagenesis, and other biochemical techniques. We found that dephosphorylated full-length Syk demonstrates a low initial rate of substrate phosphorylation that increases during the kinase reaction due to autophosphorylation. The initial rate of Syk activity was strongly increased by either pre-autophosphorylation or binding of phosphorylated immune tyrosine activation motif peptides, and each of these factors independently fully activated Syk. Deletion mutagenesis was used to identify regions of Syk important for regulation, and residues 340-356 of the SH2 kinase linker region were identified to be important for suppression of activity before activation. Comparison of the activation processes of Syk and Zap-70 revealed that Syk is more readily activated by autophosphorylation than Zap-70, although both kinases are rapidly activated by Src family kinases. We also studied Syk activity in B cell lysates and found endogenous Syk is also activated by phosphorylation and immune tyrosine activation motif binding. Together these experiments show that Syk functions as an "OR-gate" type of molecular switch. This mechanism of switch-like activation helps explain how Syk is both rapidly activated after receptor binding but also sustains activity over time to facilitate longer term changes in gene expression.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Protein-Tyrosine Kinases/metabolism , Amino Acid Motifs , B-Lymphocytes/metabolism , Gene Deletion , Humans , Immune System , Intracellular Signaling Peptides and Proteins/chemistry , Kinetics , Models, Biological , Mutagenesis , Peptides/chemistry , Phosphorylation , Protein-Tyrosine Kinases/chemistry , Spectrometry, Fluorescence/methods , Substrate Specificity , Syk Kinase , Tyrosine/chemistry , ZAP-70 Protein-Tyrosine Kinase/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...