Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Pharmacol Exp Ther ; 361(2): 303-311, 2017 05.
Article in English | MEDLINE | ID: mdl-28289077

ABSTRACT

Diabetic nephropathy remains an area of high unmet medical need, with current therapies that slow down, but do not prevent, the progression of disease. A reduced phosphorylation state of adenosine monophosphate-activated protein kinase (AMPK) has been correlated with diminished kidney function in both humans and animal models of renal disease. Here, we describe the identification of novel, potent, small molecule activators of AMPK that selectively activate AMPK heterotrimers containing the ß1 subunit. After confirming that human and rodent kidney predominately express AMPK ß1, we explore the effects of pharmacological activation of AMPK in the ZSF1 rat model of diabetic nephropathy. Chronic administration of these direct activators elevates the phosphorylation of AMPK in the kidney, without impacting blood glucose levels, and reduces the progression of proteinuria to a greater degree than the current standard of care, angiotensin-converting enzyme inhibitor ramipril. Further analyses of urine biomarkers and kidney tissue gene expression reveal AMPK activation leads to the modulation of multiple pathways implicated in kidney injury, including cellular hypertrophy, fibrosis, and oxidative stress. These results support the need for further investigation into the potential beneficial effects of AMPK activation in kidney disease.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Aminopyridines/pharmacology , Diabetic Nephropathies/drug therapy , Enzyme Activators/pharmacology , Indoles/pharmacology , Kidney/drug effects , Aminopyridines/therapeutic use , Animals , Cell Size , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Enzyme Activation , Fibrosis , Humans , Indoles/therapeutic use , Isoenzymes/metabolism , Kidney/metabolism , Kidney/pathology , Kidney Function Tests , Macaca fascicularis , Mice, Inbred C57BL , Oxidative Stress , Phosphorylation , Proteinuria/drug therapy , Proteinuria/metabolism , Rats , Species Specificity
2.
Nucleic Acid Ther ; 24(2): 127-38, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24380393

ABSTRACT

The cAMP response element binding protein (CREB)-regulated transcriptional coactivator 2 (CRTC2) is a key component of the transcription complex regulating glucagon driven hepatic glucose production and previous evidence suggests that "inhibition" of CRTC2 improves glucose homeostasis in multiple rodent models of type 2 diabetes. Here we describe a process of identifying potential therapeutic antisense oligonucleotides (ASOs) directed against CRTC2. These ASOs were designed as locked nucleic acid (LNA) gapmers and a panel of approximately 400 sequences were first screened in vitro within both human and mouse liver cell lines. A group of active and selective compounds were then profiled in acute studies in mice to determine the level of CRTC2 mRNA reduction in liver as well as to obtain a preliminary indication of safety and tolerability. The compounds with the best activity and safety profiles were then evaluated in subchronic efficacy studies using the diet induced obese (DIO) mouse model of type 2 diabetes and primary human hepatocytes. Efficacy findings broadly confirmed the beneficial effect of reducing CRTC2 mRNA levels towards improving glucose control and other markers of metabolic function. Additionally, for the first time, translation to human cells has been established with demonstration of a reduction in glucagon-mediated glucose production in primary human hepatocytes and a potential clinical biomarker source identified to assess modulation of CRTC2 mRNA following ASO treatment. While the compounds identified herein did not demonstrate a therapeutic index sufficient for further development, this study should facilitate more efficient prosecution of compounds within an in vivo setting.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Liver/metabolism , Oligonucleotides, Antisense/genetics , RNA, Messenger/genetics , Transcription Factors/genetics , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Diet, High-Fat/adverse effects , Dietary Fats/adverse effects , Gene Expression Regulation , Glucagon/metabolism , Hepatocytes/metabolism , Hepatocytes/pathology , High-Throughput Screening Assays , Liver/pathology , Mice , Mice, Inbred NOD , Oligonucleotides/genetics , Oligonucleotides/metabolism , Oligonucleotides, Antisense/metabolism , Primary Cell Culture , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism
3.
Biotechnol Bioeng ; 110(5): 1396-404, 2013 May.
Article in English | MEDLINE | ID: mdl-23239419

ABSTRACT

Targeted therapy involving the activation of death receptors DR4 and/or DR5 by its ligand, TRAIL, can selectively induce apoptosis in certain tumor cells. In order to profile the dynamic activation or trimerization of TRAIL-DR4 in live cells in real-time, the development of an apoptosis reporter cell line is essential. Fluorescence resonance energy transfer (FRET) technology via a FRET pair, cyan fluorescence protein (CFP) and yellow fluorescence protein (YFP), was used in this study. DR4-CFP and DR4-YFP were stably expressed in human lung cancer PC9 cells. Flow cytometer sorting and limited dilution coupled with fluorescence microscopy were used to select a monoclonal reporter cell line with high and compatible expression levels of DR4-CFP and DR4-YFP. FRET experiments were conducted and FRET efficiencies were monitored according to the Siegel's YFP photobleaching FRET protocol. Upon TRAIL induction a significant increase in FRET efficiencies from 5% to 9% demonstrated the ability of the DR4-CFP/YFP reporter cell line in monitoring the dynamic activation of TRAIL pathways. 3D reconstructed confocal images of DR4-CFP/YFP reporter cells exhibited a colocalized expression of DR4-CFP and DR4-YFP mainly on cell membranes. FRET results obtained during this study complements the use of epi-fluorescence microscopy for FRET analysis. The real-time FRET analysis allows the dynamic profiling of the activation of TRAIL pathways by using the time-lapse fluorescence microscopy. Therefore, DR4-CFP/YFP PC9 reporter cells along with FRET technology can be used as a tool for anti-cancer drug screening to identify compounds that are capable of activating TRAIL pathways.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Recombinant Fusion Proteins/metabolism , Cell Line, Tumor , Cell Membrane/metabolism , Drug Delivery Systems , Humans , Immunohistochemistry , Luminescent Proteins/analysis , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Fluorescence , Receptors, TNF-Related Apoptosis-Inducing Ligand/analysis , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...