Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Nanotechnol ; 15(6): 462-468, 2020 06.
Article in English | MEDLINE | ID: mdl-32424340

ABSTRACT

The urgency for affordable and reliable detectors for ionizing radiation in medical diagnostics, nuclear control and particle physics is generating growing demand for scintillator devices combining efficient scintillation, fast emission lifetime, high interaction probability with ionizing radiation and mitigated reabsorption losses in large-volume/high-density detectors. To date, the simultaneous achievement of all such features is still an open challenge. Here we realize this regime with poly(methyl methacrylate) nanocomposites embedding CsPbBr3 perovskite nanocrystals as sensitizers for a conjugated organic dye featuring a large Stokes shift and a fast emission lifetime in the red spectral region. Complete energy transfer from the nanocrystals to the dye under both X-rays and α-particle excitation results in highly stable radioluminescence with an efficiency comparable to that of commercial-grade inorganic and plastic scintillators; an ~3.4 ns emission lifetime, competitive with fast lanthanide scintillators; and reabsorption-free waveguiding for long optical distances.

2.
Phys Rev Lett ; 122(16): 166601, 2019 Apr 26.
Article in English | MEDLINE | ID: mdl-31075027

ABSTRACT

We study the nature of photoexcited charge carriers in CsPbBr_{3} nanocrystal thin films by ultrafast optical pump-THz probe spectroscopy. We observe a deviation from a pure Drude dispersion of the THz dielectric response that is ascribed to the polaronic nature of carriers; a transient blueshift of observed phonon frequencies is indicative of the coupling between photogenerated charges and stretching-bending modes of the deformed inorganic sublattice, as confirmed by DFT calculations.

3.
Nanoscale ; 11(16): 7613-7623, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30964499

ABSTRACT

Lead halide perovskites, owing to their flexible, scalable chemistry and promising physical properties are attracting increasing attention for solution-processed optoelectronic and photonic technologies. Despite their well-known 'defect tolerant' electronic structure, studies highlighted the active role of shallow and deep defect states, as well as of oxidative environmental conditions, on the optical and electrical behavior of perovskite nanocubes, films and single bulk crystals. To date, however, no in-depth systematic study of the surface trap-mediated processes in perovskite materials of different dimensionality has been conducted. In this work, we aim to bridge this gap by using O2 as a molecular probe for the effects of surface states on the exciton recombination processes of nanocubes (NCs), nanowires (NWs), nanosheets (NSs) and bulk single crystals (SCs) of CsPbBr3 perovskite. Continuous wave and time-resolved photoluminescence (PL) experiments in a controlled O2 atmosphere reveal the opposite optical response of NCs with respect to higher dimensional perovskites directly deriving from the different nature of the material surfaces. Specifically, O2 passivates surface hole-traps in NWs, NSs and SCs, leading to PL brightening with unaltered recombination dynamics. Conversely, NCs appear to be free from such surface hole-traps and exposure to O2 leads to direct extraction of photogenerated electrons that competes with radiative exciton recombination, leading to dimmed PL efficiency in atmospheric conditions. This opposite oxygen PL response demystifies the critical role of surface passivation in perovskite NCs in stark contrast to higher dimensional nanostructures and single crystals.

4.
Nano Lett ; 18(11): 6915-6923, 2018 11 14.
Article in English | MEDLINE | ID: mdl-30278610

ABSTRACT

Metal-halide perovskites are promising lasing materials for the realization of monolithically integrated laser sources, the key components of silicon photonic integrated circuits (PICs). Perovskites can be deposited from solution and require only low-temperature processing, leading to significant cost reduction and enabling new PIC architectures compared to state-of-the-art lasers realized through the costly and inefficient hybrid integration of III-V semiconductors. Until now, however, due to the chemical sensitivity of perovskites, no microfabrication process based on optical lithography (and, therefore, on existing semiconductor manufacturing infrastructure) has been established. Here, the first methylammonium lead iodide perovskite microdisc lasers monolithically integrated into silicon nitride PICs by such a top-down process are presented. The lasers show a record low lasing threshold of 4.7 µJcm-2 at room temperature for monolithically integrated lasers, which are complementary metal-oxide-semiconductor compatible and can be integrated in the back-end-of-line processes.

5.
Nat Commun ; 9(1): 1971, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29773798

ABSTRACT

Electronic properties and lattice vibrations are expected to be strongly correlated in metal-halide perovskites, due to the soft fluctuating nature of their crystal lattice. Thus, unveiling electron-phonon coupling dynamics upon ultrafast photoexcitation is necessary for understanding the optoelectronic behavior of the semiconductor. Here, we use impulsive vibrational spectroscopy to reveal vibrational modes of methylammonium lead-bromide perovskite under electronically resonant and non-resonant conditions. We identify two excited state coherent phonons at 89 and 106 cm-1, whose phases reveal a shift of the potential energy minimum upon ultrafast photocarrier generation. This indicates the transition to a new geometry, reached after approximately 90 fs, and fully equilibrated within the phonons lifetime of about 1 ps. Our results unambiguously prove that these modes drive the crystalline distortion occurring upon photo-excitation, demonstrating the presence of polaronic effects.

6.
J Am Chem Soc ; 138(41): 13604-13611, 2016 Oct 19.
Article in English | MEDLINE | ID: mdl-27665763

ABSTRACT

The simple solution processability at room temperature exposes lead halide perovskite semiconductors to a non-negligible level of unintentional structural and chemical defects. Ascertained that their primary optoelectronic properties meet the requirement for high efficiency optoelectronic technologies, a lack of knowledge about the nature of defects and their role in the device operation currently is a major challenge for their market-scale application due to the issues with stability and reliability. Here, we use excitation correlation photoluminescence (ECPL) spectroscopy to investigate the recombination dynamics of the photogenerated carriers in lead bromide perovskites and quantitatively describe the carrier trapping dynamics within a generalization of the Shockley-Read-Hall formalism. The superior sensitivity of our spectroscopic tool to the many-body interactions enables us to identify the energetics of the defects. In fact, in the case of polycrystalline films, depending on the synthetic route, we demonstrate the presence of both deep and shallow carrier traps. The shallow defects, which are situated at about 20 meV below the conduction band, dope the semiconductor, leading to a substantial enhancement of the photoluminescence quantum yield despite carrier trapping. At excitation densities relevant for lasing, we observe breakdown of the rate-equation model, indicating a buildup of a highly correlated regime of the photocarrier population that suppresses the nonradiative Auger recombination. Furthermore, we demonstrate that colloidal nanocrystals represent virtually defect-free systems, suffering from nonradiative quenching only due to subpicosecond Auger-like interactions at high excitation density. By correlating the fabrication conditions to the nonradiative loss channels, this work provides guidelines for material engineering towards superior optoelectronic devices.

7.
Nat Photonics ; 9(10): 695-701, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26442125

ABSTRACT

Solar cells based on hybrid inorganic-organic halide perovskites have demonstrated high power conversion efficiencies in a range of architectures. The existence and stability of bound electron-hole pairs in these materials, and their role in the exceptional performance of optoelectronic devices, remains a controversial issue. Here we demonstrate, through a combination of optical spectroscopy and multiscale modeling as a function of the degree of polycrystallinity and temperature, that the electron-hole interaction is sensitive to the microstructure of the material. The long-range order is disrupted by polycrystalline disorder and the variations in electrostatic potential found for smaller crystals suppress exciton formation, while larger crystals of the same composition demonstrate an unambiguous excitonic state. We conclude that fabrication procedures and morphology strongly influence perovskite behaviour, with both free carrier and excitonic regimes possible, with strong implications for optoelectronic devices.

8.
J Am Chem Soc ; 136(51): 17730-3, 2014 Dec 24.
Article in English | MEDLINE | ID: mdl-25469762

ABSTRACT

We report about the relationship between the morphology and luminescence properties of methylammonium lead trihalide perovskite thin films. By tuning the average crystallite dimension in the film from tens of nanometers to a few micrometers, we are able to tune the optical band gap of the material along with its photoluminescence lifetime. We demonstrate that larger crystallites present smaller band gap and longer lifetime, which correlates to a smaller radiative bimolecular recombination coefficient. We also show that they present a higher optical gain, becoming preferred candidates for the realization of CW lasing devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...