Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Endocrinol ; 530: 111253, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33781836

ABSTRACT

Parathyroid hormone-related peptide (PTHrP) exerts its effects on cells derived from colorectal cancer (CRC) and tumor microenvironment and is involved in processes requiring the epithelial-mesenchymal transition (EMT). Here, we report that PTHrP modulates factors expression and morphological changes associated with EMT in HCT116 cells from CRC. PTHrP increased the protein expression of SPARC, a factor involved in EMT, in HCT116 cells but not in Caco-2 cells also from CRC but with less aggressiveness. PTHrP also increased SPARC expression and its subsequent release from endothelial HMEC-1 cells. The conditioned media of PTHrP-treated HMEC-1 cells induced early changes related to EMT in HCT116 cells. Moreover, SPARC treatment on HCT116 cells potentiated PTHrP modulation in E-cadherin expression and cell migration. In vivo PTHrP also increased SPARC expression and decreased E-cadherin expression. These results suggest a novel PTHrP action on CRC progression involving the microenvironment in the modulation of events associated with EMT.


Subject(s)
Antigens, CD/metabolism , Cadherins/metabolism , Colonic Neoplasms/pathology , Endothelial Cells/cytology , Osteonectin/metabolism , Parathyroid Hormone-Related Protein/metabolism , Up-Regulation , Animals , Caco-2 Cells , Cell Line , Cell Movement , Cell Proliferation , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Culture Media, Conditioned/chemistry , Disease Progression , Endothelial Cells/metabolism , Gene Expression Regulation, Neoplastic , HCT116 Cells , Humans , Mice , Neoplasm Transplantation , Osteonectin/genetics , Parathyroid Hormone-Related Protein/genetics , Tumor Microenvironment
2.
Antioxid Redox Signal ; 30(18): 2030-2049, 2019 06 20.
Article in English | MEDLINE | ID: mdl-30484334

ABSTRACT

Aims: Heme oxygenase-1 (HO-1) is an enzyme involved in cellular responses to oxidative stress and has also been shown to regulate processes related to cancer progression. In this regard, HO-1 has been shown to display a dual effect with either antitumor or protumor activity, which is also true for breast cancer (BC). In this work, we address this discrepancy regarding the role of HO-1 in BC. Results: HO-1 was detected in human BC tissues, and its protein levels correlated with reduced tumor size and longer overall survival time of patients, thus suggesting the clinical importance of HO-1 in this type of cancer. Contrariwise, nuclear localization of HO-1 correlated with higher tumor grade suggesting that the effect of HO-1 is dependent on its cellular localization. In vivo experiments showed that both pharmacological activation and genetic overexpression of HO-1 reduce the tumor burden in two different animal models of BC. Furthermore, the pharmacological and genetic activation of HO-1 in several BC cell lines reduce the cellular viability by inducing apoptosis and cell cycle arrest and decrease the cellular migration and invasion rates by modulating pathways involved in the epithelial-mesenchymal transition. Furthermore, HO-1 activation impaired in vivo the metastatic dissemination. Innovation and Conclusion: By using various BC cell lines and animal models as well as human tumor samples, we demonstrated that total HO-1 displays antitumor activities in BC. Furthermore, our study suggests that HO-1 subcellular localization may explain the differential effects observed for the protein in different tumor types.


Subject(s)
Breast Neoplasms/pathology , Cell Nucleus/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Up-Regulation , Animals , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Cell Survival , Epithelial-Mesenchymal Transition , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Neoplasm Grading , Neoplasm Transplantation , Survival Analysis , Tumor Burden
3.
Oncotarget ; 9(34): 23396-23412, 2018 May 04.
Article in English | MEDLINE | ID: mdl-29805742

ABSTRACT

Triple-negative breast cancer (TNBC) is associated with poor prognosis, high local recurrence rate and high rate of metastasis compared with other breast cancer subtypes. In addition, TNBC lacks a targeted therapy. This scenario highlights the need for novel compounds with high potential for TNBC treatment. In this regard, natural products are important sources of anticancer drugs. D-Fraction, a proteoglucan extracted from the edible and medicinal mushroom Grifola frondosa (Maitake), is a dietary supplement that has been shown to exert both immunostimulatory and immune-independent antitumoral effects on some cancer types. However, its antitumoral potential in TNBC is unknown. Therefore, we employed TNBC cells to investigate if D-Fraction is able to attenuate their aggressive phenotype. We found that D-Fraction decreases MDA-MB-231 cell viability through apoptosis induction and reduces their metastatic potential. D-Fraction increases cell-cell adhesion by increasing E-cadherin protein levels and ß-catenin membrane localization, and increases cell-substrate adhesion. D-Fraction also decreases cell motility by affecting actin cytoskeleton rearrangements, and proteolytic activity of MMP-2 and MMP-9. Furthermore, D-Fraction decreases the invasive capacity of MDA-MB-231 cells. In concordance, D-Fraction retards tumor growth and reduces lung metastases in a xenograft model. Altogether, these results suggest the potential therapeutic role of D-Fraction in aggressive TNBC.

4.
J Steroid Biochem Mol Biol ; 178: 22-35, 2018 04.
Article in English | MEDLINE | ID: mdl-29102624

ABSTRACT

Glioblastoma multiforme (GBM) is the worst and most common brain tumor, characterized by high proliferation and invasion rates. The current standard treatment is mainly based on chemoradiotherapy and this approach has slightly improved patient survival. Thus, novel strategies aimed at prolonging the survival and ensuring a better quality of life are necessary. In the present work, we investigated the antitumoral effect of the novel analogue of calcitriol EM1 on GBM cells employing in vitro, in silico, and in vivo assays. In vitro, we demonstrated that EM1 treatment selectively decreases the viability of murine and human tumor cells without affecting that of normal human astrocytes. The analysis of the mechanisms showed that EM1 produces cell cycle arrest in the T98G cell line, which is accompanied by an increase in p21, p27, p57 protein levels and a decrease in cyclin D1, p-Akt-S473, p-ERK1/2 and c-Jun expression. Moreover, EM1 treatment also exerts in GBM cells anti-migratory effects and decreases their invasive capacity by a reduction in MMP-9 proteolytic activity. In silico, we demonstrated that EM1 is able to bind to the vitamin D receptor with greater affinity than calcitriol. Finally, we showed that EM1 treatment of nude mice administered at 50ug/kg body weight during 21days neither induces hypercalcemia nor toxicity effects. In conclusion, all the results indicate the potential of EM1 analogue as a promising therapeutic alternative for GBM treatment.


Subject(s)
Apoptosis/drug effects , Calcitriol/pharmacology , Cell Cycle/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Glioblastoma/pathology , Animals , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Cell Adhesion/drug effects , Glioblastoma/drug therapy , Humans , Male , Mice , Mice, Nude , Tumor Cells, Cultured , Vitamins/pharmacology
5.
Nutr Cancer ; 69(1): 29-43, 2017 01.
Article in English | MEDLINE | ID: mdl-27892708

ABSTRACT

D-Fraction is protein-bound ß-1,6 and ß-1,3 glucans (proteoglucan) extracted from the edible and medicinal mushroom Grifola frondosa (Maitake). The antitumoral effect of D-Fraction has long been exclusively attributed to their immunostimulatory capacity. However, in recent years increasing evidence showed that D-Fraction directly affects the viability of canine and human tumor cells, independent of the immune system. Previously, we have reported that D-Fraction modulates the expression of genes associated with cell proliferation, cell death, migration, invasion, and metastasis in MCF7 human breast cancer cells. Therefore, the purpose of the current study is to investigate if this modulation of gene expression by Maitake D-Fraction really modulates tumor progression. In the present work, we demonstrate for the first time that Maitake D-Fraction is able to act directly on mammary tumor cells, modulating different cellular processes involved in the development and progression of cancer. We demonstrate that D-Fraction decreases cell viability, increases cell adhesion, and reduces the migration and invasion of mammary tumor cells, generating a less aggressive cell behavior. In concordance with these results, we also demonstrate that D-Fraction decreases tumor burden and the number of lung metastases in a murine model of breast cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Grifola/chemistry , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/pathology , Animals , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cadherins/metabolism , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Female , Lung Neoplasms/prevention & control , Lung Neoplasms/secondary , Mammary Neoplasms, Experimental/metabolism , Matrix Metalloproteinase 2/metabolism , Mice, Inbred BALB C
6.
J Steroid Biochem Mol Biol ; 163: 193-205, 2016 10.
Article in English | MEDLINE | ID: mdl-27208626

ABSTRACT

Vitamin D has been shown to display a wide variety of antitumour effects, but their therapeutic use is limited by its severe side effects. We have designed and synthesized a Gemini vitamin D analogue of calcitriol (UVB1) which has shown to display antineoplastic effects on different cancer cell lines without causing hypercalcemia. The aim of this work has been to investigate, by employing in silico, in vitro, and in vivo assays, whether UVB1 inhibits human colorectal carcinoma progression. We demonstrated that UVB1 induces apoptotic cell death and retards cellular migration and invasion of HCT116 colorectal carcinoma cells. Moreover, the analogue reduced the tumour volume in vivo, and modulated the expression of Bax, E-cadherin and nuclear ß-catenin in tumour animal tissues without producing toxic effects. In silico analysis showed that UVB1 exhibits greater affinity for the ligand binding domain of vitamin D receptor than calcitriol, and that several characteristics in the three-dimensional conformation of VDR may influence the biological effects. These results demonstrate that the Gemini vitamin D analogue affects the growth of the colorectal cancer and suggest that UVB1 is a potential chemotherapeutic agent for treatment of this disease.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Gene Expression Regulation, Neoplastic , Receptors, Calcitriol/chemistry , Vitamin D/analogs & derivatives , Vitamin D/pharmacology , Animals , Antigens, CD , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Binding Sites , Cadherins/genetics , Cadherins/metabolism , Cell Movement/drug effects , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Disease Progression , HCT116 Cells , Humans , Ligands , Mice , Mice, Nude , Molecular Docking Simulation , Protein Binding , Protein Interaction Domains and Motifs , Receptors, Calcitriol/antagonists & inhibitors , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Vitamin D/chemistry , Xenograft Model Antitumor Assays , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , beta Catenin/genetics , beta Catenin/metabolism
7.
Arch Pharm (Weinheim) ; 348(5): 315-29, 2015 May.
Article in English | MEDLINE | ID: mdl-25864390

ABSTRACT

The active form of vitamin D3, 1α,25(OH)2D3, plays a major role in maintaining calcium/phosphate homeostasis. In addition, it is a potent antiproliferative and pro-differentiating agent. Unfortunately, it usually causes hypercalcemia in vivo when effective antitumour doses are used. It has therefore been found necessary to synthesise new analogues that retain or even increase the antitumour effects but preclude hypercalcemia. This report presents the synthesis of a novel Gemini vitamin D analogue (UVB1) and its biological evaluation. We demonstrate that this compound has potent antitumoural effects over a wide panel of tumour cell lines while showing lack of hypercalcemic activity and toxicity effects in in vivo assays.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Hypercalcemia/chemically induced , Neoplasms/drug therapy , Vitamin D/analogs & derivatives , Vitamin D/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/toxicity , Calcium/blood , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Design , Female , Humans , Hypercalcemia/blood , Inhibitory Concentration 50 , Male , Mice , Mice, Nude , Molecular Structure , Neoplasms/pathology , Structure-Activity Relationship , Time Factors , Vitamin D/chemical synthesis , Vitamin D/toxicity
8.
Exp Mol Pathol ; 97(3): 321-31, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25236576

ABSTRACT

The expression of heme oxygenase-1 (HO-1) has been shown to be up-regulated in colorectal cancer (CRC), but the role it plays in this cancer type has not yet been addressed. The aims of this study have been to analyze HO-1 expression in human invasive CRC, evaluate its correlation with clinical and histo-pathological parameters and to investigate the mechanisms through which the enzyme influences tumor progression. We confirmed that HO-1 was over-expressed in human invasive CRC and found that the expression of the enzyme was associated with a longer overall survival time. In addition, we observed in a chemically-induced CRC animal model that total and nuclear HO-1 expression increases with tumor progression. Our investigation of the mechanisms involved in HO-1 action in CRC demonstrates that the protein reduces cell viability through induction of cell cycle arrest and apoptosis and, importantly, that a functional p53 tumor suppressor protein is required for these effects. This reduction in cell viability is accompanied by modulation of the levels of p21, p27, and cyclin D1 and by modulation of Akt and PKC pathways. Altogether, our results demonstrate an antitumoral role of HO-1 and points to the importance of p53 status in this antitumor activity.


Subject(s)
Adenocarcinoma/pathology , Colorectal Neoplasms/pathology , Heme Oxygenase-1/biosynthesis , Tumor Suppressor Protein p53/biosynthesis , Adenocarcinoma/metabolism , Adenocarcinoma/mortality , Animals , Area Under Curve , Blotting, Western , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/mortality , Disease Models, Animal , Female , Flow Cytometry , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Male , ROC Curve , Rats , Rats, Wistar , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...