Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 52(40): 14564-14572, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37782116

ABSTRACT

The Ni-rich layered oxide cathode has shown high energy density, proper rate capability, and longevity of the rechargeable battery, while poor stability and capacity fading are assumed to be its common cons. To address this obstacle, prospective cathode materials are synthesized by integrating the lithium transition metal oxides with an artificial cathode electrolyte interphase (CEI) layer. Herein, plasma-enhanced atomic layer deposition (PEALD) is employed to coat the LiNi0.8Mn0.1Co0.1O2 (NMC811) electrode with Al2O3 and MoO3. The combined results from morphological examinations revealed the formation of uniform Al2O3 and MoO3 sheets after 200 cycles of PEALD coating. Consistent results from the XRD analysis demonstrate that Al2O3 and MoO3 artificial CEIs can reduce Li-Ni mixing. The cyclic voltammetry tests show the oxidation-reduction kinetic. The modified NMC811 structures with Al2O3 and MoO3 represent a remarkable improvement in terms of capacity retention. The coated cathode with Al2O3 clearly outperforms the modified configuration with MoO3 concerning ionic conductivity, charge/discharge reversibility, and capacity retention. The promising results obtained in this study open the possibility of synthesizing Ni-rich cathodes with enhanced electrochemical performance.

2.
ACS Appl Mater Interfaces ; 15(32): 38530-38539, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37535433

ABSTRACT

The drastic volume expansion and dendrite growth of lithium metal anodes give rise to poor electrochemical reversibility. Herein, ZnO, N dually doped nanocages (c-ZNCC) were synthesized as the host for lithium metal anodes using the zeolitic imidazolate framework-8 (ZIF-8). The synthesis is based on a two-step core@shell evolution mechanism, which could guide lithium deposition rapidly and offer a fast lithium-ion diffusion during the cycling process. Benefiting from the unique design, the as-obtained c-ZNCC can render a record short lithium infusion as low as 1.5 s, a stable lithium stripping/plating capability as long as 3000 h, and a voltage hysteresis of 95 mV when cycling at 10 mA cm-2 to 10 mA h cm-2. A low Tafel slope of 3.45 mA cm-2 demonstrates the efficient charge transfer of c-ZNCC-Li, and the galvanostatic intermittent titration technique measurement shows high diffusion coefficient of c-ZNCC-Li during the charging process. In addition, the LNMO||c-ZNCC-Li cell exhibits a capacity retention as high as 93.7% at 1 C after 200 cycles. This work creates a new design for deriving nanocages with dual lithiophilic spots using a metal-organic framework and carbon cloth for favorable Li metal anodes.

3.
ACS Omega ; 7(8): 7190-7198, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35252709

ABSTRACT

MXenes show outstanding specific capacitance in aqueous electrolytes. However, the narrow potential window of aqueous electrolytes restrains the energy density. Ionic liquid electrolytes can provide a higher potential window and superior specific energy but are subject to slow ion transport and difficult intercalation for their larger ion size. It is desirable to explore larger interlayer-spaced (d-spaced) MXenes that can facilitate the large ion intercalation-deintercalation process. This work reports the first-ever supercapacitor application of the Mo2Ti2C3 MXene free-standing film electrode (f-Mo2Ti2C3) using 1 M 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide (EMIMTFSI) in acetonitrile electrolyte. Without any preintercalating agents, the authors achieved an interlayer spacing of ∼2.4 nm in the f-Mo2Ti2C3 material through etching, followed by a vacuum-assisted filtration technique. The microstructure, electrochemical properties, and charge storage kinetics of the f-Mo2Ti2C3 outperform the conventional f-Ti3C2T x . The f-Mo2Ti2C3-based symmetric two-electrode device exhibited remarkable specific energy and specific power of 188 Wh kg-1 and 22 kW kg-1, respectively, along with a high specific capacitance of 152 F g-1. This larger d-spaced f-Mo2Ti2C3 can emerge as a better alternative to the conventional f-Ti3C2T x in ionic liquid electrolytes to design next-generation high-performance MXene supercapacitors.

4.
Molecules ; 26(14)2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34299463

ABSTRACT

Fabricating electrical double-layer capacitors (EDLCs) with high energy density for various applications has been of great interest in recent years. However, activated carbon (AC) electrodes are restricted to a lower operating voltage because they suffer from instability above a threshold potential window. Thus, they are limited in their energy storage. The deposition of inorganic compounds' atomic layer deposition (ALD) aiming to enhance cycling performance of supercapacitors and battery electrodes can be applied to the AC electrode materials. Here, we report on the investigation of zinc oxide (ZnO) coating strategy in terms of different pulse times of precursors, ALD cycles, and deposition temperatures to ensure high electrical conductivity and capacitance retention without blocking the micropores of the AC electrode. Crystalline ZnO phase with its optimal forming condition is obtained preferably using a longer precursor pulse time. Supercapacitors comprising AC electrodes coated with 20 cycles of ALD ZnO at 70 °C and operated in TEABF4/acetonitrile organic electrolyte show a specific capacitance of 23.13 F g-1 at 5 mA cm-2 and enhanced capacitance retention at 3.2 V, which well exceeds the normal working voltage of a commercial EDLC product (2.7 V). This work delivers an additional feasible approach of using ZnO ALD modification of AC materials, enhancing and promoting stable EDLC cells under high working voltages.

5.
ACS Omega ; 6(11): 7615-7625, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33778272

ABSTRACT

Designing the mesopore-dominated activated carbon electrodes has witnessed a significant breakthrough in enhancing the electrolyte breakdown voltage and energy density of supercapacitors. Herein, we designed N-doped mesoporous-dominated hierarchical activated carbon (N-dfAC) from the dragon fruit peel, an abundant biomass precursor, under the synergetic effect of KOH as the activating agent and melamine as the dopant. The electrode with the optimum N-doping content (3.4 at. %) exhibits the highest specific capacitance of 427 F g-1 at 5 mA cm-2 and cyclic stability of 123% capacitance retention until 50000 charge-discharge cycles at 500 mA cm-2 in aqueous 6 M KOH electrolytes. We designed a 4 V symmetric coin cell supercapacitor cell, which exhibits a remarkable specific energy and specific power of 112 W h kg-1 and 3214 W kg-1, respectively, in organic electrolytes. The cell also exhibits a significantly higher cycle life (109% capacitance retention) after 5000 GCD cycles at the working voltage of ≥3.5 V than commercial YP-50 AC (∼60% capacitance retention). The larger Debye length of the diffuse ion layer permitted by the mesopores can explain the higher voltage window, and the polar N-doped species in the dfAC enhance capacitance and ion transport. The results endow a new path to design high-capacity and high-working voltage EDLCs from eco-friendly and sustainable biomass materials by properly tuning their pore structures.

6.
ChemistryOpen ; 10(4): 402-407, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33590713

ABSTRACT

Designing high voltage (>3 V) and stable electrochemical supercapacitors with low self-discharge is desirable for the applications in modern electronic devices. This work demonstrates a 4 V symmetric supercapacitor with stabilized cycling performance through atomic layer deposition (ALD) of alumina (Al2 O3 ) on the surface of activated carbon (AC). The 20-cycle ALD Al2 O3 coated AC delivers 84 % capacitance retention after 1000 charge/discharge cycles under 4 V, contrary to the bare AC cells having only 48 % retention. The extended cycling life is associated with the thickened Stern layer and suppressed oxygen functional group. The self-discharge data also show that the Al2 O3 coating enables AC cells to maintain 53 % of charge retention after 12 h, which is more than twice higher than that of bare AC cells under the same test protocol of 4 V charging. The curve fitting analysis reveals that ALD coating induced slow self-discharge dominated by ion diffusion mechanism, thus enhancing the AC surface energy.

7.
Nanomaterials (Basel) ; 12(1)2021 Dec 23.
Article in English | MEDLINE | ID: mdl-35009977

ABSTRACT

We report here on a hollow-fiber hierarchical porous carbon exhibiting an ultra-high specific surface area, synthesized by a facile method of carbonization and activation, using the Metaplexis Japonica (MJ) shell. The Metaplexis Japonica-based activated carbon demonstrated a very high specific surface area of 3635 m2 g-1. Correspondingly, the derived carbonaceous material delivers an ultra-high capacitance and superb cycle life in an alkaline electrolyte. The pore-ion size compatibility is optimized using tailored hierarchical porous carbon and different ion sized organic electrolytes. In ionic liquids nonaqueous based electrolytes we tailored the MJ carbon pore structure to the electrolyte ion size. The corresponding supercapacitor shows a superior rate performance and low impedance, and the device records specific energy and specific power densities as high as 76 Wh kg-1 and 6521 W kg-1, as well as a pronounced cycling durability in the ionic liquid electrolytes. Overall, we suggest a protocol for promising carbonaceous electrode materials enabling superior supercapacitors performance.

8.
Phys Chem Chem Phys ; 18(31): 21278-87, 2016 Aug 21.
Article in English | MEDLINE | ID: mdl-27302411

ABSTRACT

Facile synthesis of 2-10 nm-sized graphene quantum dots (GQDs) from graphite powder by organic solvent-assisted liquid exfoliation using a sonochemical method is reported in this study. Synthesized GQDs are well dispersed in organic solvents like ethyl acetoacetate (EAA), dimethyl formamide (DMF) and also in water. MALDI-TOF mass spectrometry reveals its selective mass fragmentation. Detailed characterizations by various techniques like X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and high resolution transmission electron microscopy (HRTEM) confirm the formation of disordered, functional GQDs. Density functional theory (DFT) calculation confirms HOMO-LUMO energy gap variation with changing size and functionalities. Photoluminescence (PL) properties of as-prepared GQDs were studied in detail. The ensemble studies of GQDs showed excellent photoluminescence properties comprising normal and upconverted fluorescence, delayed fluorescence and room-temperature phosphorescence. PL decay dynamics of GQDs has been explored using time-correlated single-photon technique (TCSPC) as well as femtosecond fluorescence upconversion technique. In vitro cytotoxicity study reveals its biocompatibility and high cell viability (>91%) even at high concentration (400 µg mL(-1)) of GQDs in Chinese Hamster Ovary (CHO) cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...