Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Theriogenology ; 225: 16-32, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38788626

ABSTRACT

The challenges posed by climate change and increasing world population are stimulating renewed efforts for improving the sustainability of animal production. To meet such challenges, the contribution of genomic selection approaches, in combination with assisted reproductive technologies (ARTs), to spreading and preserving animal genetics is essential. The largest increase in genetic gain can be achieved by shortening the generation interval. This review provides an overview of the current status and progress of advanced ARTs that could be applied to reduce the generation time in both female and male of domestic ruminants. In females, the use of juvenile in vitro embryo transfer (JIVET) enables to generate offspring after the transfer of in vitro produced embryos derived from oocytes of prepubertal genetically superior donors reducing the generational interval and acceleration genetic gain. The current challenge is increasing in vitro embryo production (IVEP) from prepubertal derived oocytes which is still low and variable. The two main factors limiting IVEP success are the intrinsic quality of prepubertal oocytes and the culture systems for in vitro maturation (IVM). In males, advancements in ARTs are providing new strategies to in vitro propagate spermatogonia and differentiate them into mature sperm or even to recapitulate the whole process of spermatogenesis from embryonic stem cells. Moreover, the successful use of immature cells, such as round spermatids, for intracytoplasmic injection (ROSI) and IVEP could allow to complete the entire process in few months. However, these approaches have been successfully applied to human and mouse whereas only a few studies have been published in ruminants and results are still controversial. This is also dependent on the efficiency of ROSI that is limited by the current isolation and selection protocols of round spermatids. In conclusion, the current efforts for improving these reproductive methodologies could lead toward a significant reduction of the generational interval in livestock animals that could have a considerable impact on agriculture sustainability.


Subject(s)
Reproductive Techniques, Assisted , Ruminants , Animals , Reproductive Techniques, Assisted/veterinary , Female , Male
2.
Cells ; 13(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38607067

ABSTRACT

In vitro-generated blastocyst-like structures are of great importance since they recapitulate specific features or processes of early embryogenesis, thus avoiding ethical concerns as well as increasing scalability and accessibility compared to the use of natural embryos. Here, we combine cell reprogramming and mechanical stimuli to create 3D spherical aggregates that are phenotypically similar to those of natural embryos. Specifically, dermal fibroblasts are reprogrammed, exploiting the miR-200 family property to induce a high plasticity state in somatic cells. Subsequently, miR-200-reprogrammed cells are either driven towards the trophectoderm (TR) lineage using an ad hoc induction protocol or encapsulated into polytetrafluoroethylene micro-bioreactors to maintain and promote pluripotency, generating inner cell mass (ICM)-like spheroids. The obtained TR-like cells and ICM-like spheroids are then co-cultured in the same micro-bioreactor and, subsequently, transferred to microwells to encourage blastoid formation. Notably, the above protocol was applied to fibroblasts obtained from young as well as aged donors, with results that highlighted miR-200's ability to successfully reprogram young and aged cells with comparable blastoid rates, regardless of the donor's cell age. Overall, the approach here described represents a novel strategy for the creation of artificial blastoids to be used in the field of assisted reproduction technologies for the study of peri- and early post-implantation mechanisms.


Subject(s)
Cues , MicroRNAs , Blastocyst , Cellular Reprogramming , Embryo Implantation , MicroRNAs/genetics
3.
Theriogenology ; 222: 1-9, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38581760

ABSTRACT

MicroRNAs (miRNAs) are small highly conserved non-coding RNA molecules that orchestrate a wide range of biological processes through post-transcriptional regulation of gene expression. During development, miRNAs play a key role in driving embryo patterning and morphogenesis in a specific and stage-dependent manner. Here, we investigated whether sperm from bulls with different fertilizing ability in vitro influence blastocyst quality and miRNA content. Results demonstrate that blastocysts obtained using sperm from high fertility sires (H group) display significantly greater cleavage and blastocyst development as well as greater transcript abundance in blastocysts for the developmental competence markers CDX2, KRT8, NANOG, OCT4, PLAC8, PTGS2, SOX17, and SOX2, compared to blastocysts generated using sperm from low fertility sires (L group). In parallel, high throughput deep sequencing and differential expression studies revealed that H blastocysts exhibit a greater miRNA content compared to L blastocysts, with hsa-miR-4755-5p and hsa-miR-548d-3p uniquely detected in the H group, and greater abundance of hsa-miR-1225-3p in the H group. Gene ontology (GO) and KEGG pathway analyses indicated that the 3 differentially expressed miRNAs identified are involved in the regulation of many biological mechanisms with a key role in aspects of early embryo development, including transcriptional regulation, cellular biosynthesis, nucleic acid metabolism, cellular differentiation, apoptosis, cytoskeleton remodeling, cell-to-cell interactions, and endocytosis. Overall, our results indicate that sperm fertilizing ability influences blastocyst developmental ability and miRNA content. In addition, we demonstrate an association between blastocyst quality and miRNA content, thus suggesting the possibility to score miRNA expression as biomarkers for improved routine embryo selection technologies to support assisted reproductive efforts.


Subject(s)
Blastocyst , Fertilization in Vitro , MicroRNAs , Spermatozoa , Animals , Cattle/embryology , MicroRNAs/genetics , MicroRNAs/metabolism , Blastocyst/physiology , Male , Fertilization in Vitro/veterinary , Spermatozoa/physiology , Embryo Culture Techniques/veterinary , Gene Expression Regulation, Developmental , Embryonic Development
4.
Methods Mol Biol ; 2767: 161-173, 2024.
Article in English | MEDLINE | ID: mdl-37199907

ABSTRACT

Mammalian embryogenesis is characterized by complex interactions between embryonic and extra-embryonic tissues that coordinate morphogenesis, coupling bio-mechanical and bio-chemical cues, to regulate gene expression and influence cell fate. Deciphering such mechanisms is essential to understand early embryogenesis, as well as to harness differentiation disorders. Currently, several early developmental events remain unclear, mainly due to ethical and technical limitations related to the use of natural embryos.Here, we describe a three-step approach to generate 3D spherical structures, arbitrarily defined "epiBlastoids," whose phenotype is remarkably similar to natural embryos. In the first step, adult dermal fibroblasts are converted into trophoblast-like cells, combining the use of 5-azacytidine, to erase the original cell phenotype, with an ad hoc induction protocol, to drive erased cells into the trophoblast lineage. In the second step, once again epigenetic erasing is applied, in combination with mechanosensing-related cues, to generate inner cell mass (ICM)-like spheroids. More specifically, erased cells are encapsulated in micro-bioreactors to promote 3D cell rearrangement and boost pluripotency. In the third step, chemically induced trophoblast-like cells and ICM-like spheroids are co-cultured in the same micro-bioreactors. The newly generated embryoids are then transferred to microwells, to encourage further differentiation and favor epiBlastoid formation. The procedure here described is a novel strategy for in vitro generation of 3D spherical structures, phenotypically similar to natural embryos. The use of easily accessible dermal fibroblasts and the lack of retroviral gene transfection make this protocol a promising strategy to study early embryogenesis as well as embryo disorders.


Subject(s)
Blastocyst , Cues , Animals , Trophoblasts , Embryo, Mammalian , Cell Differentiation , Epigenesis, Genetic , Fibroblasts/metabolism , Mammals
5.
Molecules ; 28(21)2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37959856

ABSTRACT

Genistein is a natural compound belonging to flavonoids, having antioxidant, anti-inflammatory, and anti-neoplastic properties. Genistein is considered a phytoestrogen. As such, genistein can bind estrogen receptors (ERα and ERß), although with a lower affinity than that of estradiol. Despite considerable work, the effects of genistein are not well established yet. This review aims to clarify the role of genistein on female and male reproductive functions in mammals. In females, at a high dose, genistein diminishes the ovarian activity regulating several pathway molecules, such as topoisomerase isoform I and II, protein tyrosine kinases (v-src, Mek-4, ABL, PKC, Syk, EGFR, FGFR), ABC, CFTR, Glut1, Glut4, 5α-reductase, PPAR-γ, mitogen-activated protein kinase A, protein histidine kinase, and recently circulating RNA-miRNA. The effect of genistein on pregnancy is still controversial. In males, genistein exerts an estrogenic effect by inducing testosterone biosynthesis. The interaction of genistein with both natural and synthetic endocrine disruptors has a negative effect on testis function. The positive effect of genistein on sperm quality is still in debate. In conclusion, genistein has a potentially beneficial effect on the mechanisms regulating the reproduction of females and males. However, this is dependent on the dose, the species, the route, and the time of administration.


Subject(s)
Genistein , Semen , Pregnancy , Animals , Male , Female , Genistein/pharmacology , Semen/metabolism , Phytoestrogens/pharmacology , Receptors, Estrogen/metabolism , Estrogen Receptor alpha/metabolism , Reproduction , Mammals/metabolism
7.
Animals (Basel) ; 13(14)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37508055

ABSTRACT

The ever-increasing number and variation of raw materials utilized to provide alternative feed formulations continues to allow for a more sustainable and flexible approach. Testing all these options in vivo is still the most robust and reliable manner to pick the best raw material candidates, but it requires the use of large numbers of animals and is time-consuming and expensive. Therefore, we are developing an in vitro platform that can provide a reliable evaluation of new ingredients. The main aim of this work was to combine an in vitro digestion protocol of extruded, commercially relevant aquafeeds with the exposure of intestinal epithelial cells to the extracted bio-available fraction (BAF). The results show that 250,000 cells/cm2 represents the optimal seeding density and that up to 50% BAF concentration for up to 24 h had no negative effects on the epithelial barrier morphology and function. It is possible to determine amino acid digestibility and bioavailability in all the experimental conditions (with and without BSA, at 25% and 50% dilution) and at all time points (0, 6, and 24 h). However, BAF concentration, the medium used for its dilution, and the length of exposure to the different epithelial cell lines can all influence the results and, therefore, must be selected according to the final aim of the experiment.

8.
Cells ; 12(14)2023 07 13.
Article in English | MEDLINE | ID: mdl-37508507

ABSTRACT

In vitro organotypic cell-based intestinal platforms, able to faithfully recapitulate the complex functions of the organ in vivo, would be a great support to search for more sustainable feed ingredients in aquaculture. We previously demonstrated that proliferation or differentiation of rainbow trout intestinal cell lines is dictated by the culture environment. The aim of the present work was to develop a culture platform that can efficiently promote cell differentiation into mature enterocytes. We compared four options, seeding the RTpiMI cell line derived from the proximal intestine on (1) polyethylene terephthalate (PET) culture inserts ThinCert™ (TC), (2) TC coated with the solubilized basement membrane matrix Matrigel® (MM), (3) TC with the rainbow trout fibroblast cell line RTskin01 embedded within the Matrigel® matrix (MMfb), or (4) the highly porous polystyrene scaffold Alvetex® populated with the abovementioned fibroblast cell line (AV). We evaluated the presence of columnar cells with a clear polarization of brush border enzymes, the formation of an efficient barrier with a significant increase in transepithelial electrical resistance (TEER), and its ability to prevent the paracellular flux of large molecules but allow the transit of small compounds (proline and glucose) from the apical to the basolateral compartment. All parameters improved moving from the simplest (TC) through the more complex platforms. The presence of fibroblasts was particularly effective in enhancing epithelial cell differentiation within the AV platform recreating more closely the complexity of the intestinal mucosa, including the presence of extracellular vesicles between fibroblasts and epithelial cells.


Subject(s)
Oncorhynchus mykiss , Animals , Oncorhynchus mykiss/metabolism , Intestines , Intestinal Mucosa/metabolism , Cell Line , Microvilli
10.
Macromol Biosci ; 23(10): e2300016, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37243584

ABSTRACT

To provide prominent accessibility of fishmeal to the European population, the currently available, time- and cost-extensive feeding trials, which evaluate fish feed, should be replaced. The current paper reports on the development of a novel 3D culture platform, mimicking the microenvironment of the intestinal mucosa in vitro. The key requirements of the model include sufficient permeability for nutrients and medium-size marker molecules (equilibrium within 24 h), suitable mechanical properties (G' < 10 kPa), and close morphological similarity to the intestinal architecture. To enable processability with light-based 3D printing, a gelatin-methacryloyl-aminoethyl-methacrylate-based biomaterial ink is developed and combined with Tween 20 as porogen to ensure sufficient permeability. To assess the permeability properties of the hydrogels, a static diffusion setup is utilized, indicating that the hydrogel constructs are permeable for a medium size marker molecule (FITC-dextran 4 kg mol-1 ). Moreover, the mechanical evaluation through rheology evidence a physiologically relevant scaffold stiffness (G' = 4.83 ± 0.78 kPa). Digital light processing-based 3D printing of porogen-containing hydrogels results in the creation of constructs exhibiting a physiologically relevant microarchitecture as evidenced through cryo-scanning electron microscopy. Finally, the combination of the scaffolds with a novel rainbow trout (Oncorhynchus mykiss) intestinal epithelial cell line (RTdi-MI) evidence scaffold biocompatibility.

11.
Int J Mol Sci ; 24(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37175996

ABSTRACT

Aging is a complex, multifaceted degenerative process characterized by a progressive accumulation of macroscopic and microscopic modifications that cause a gradual decline of physiological functions. During the last few years, strategies to ease and counteract senescence or even rejuvenate cells and tissues were proposed. Here we investigate whether young cell secretome-derived extracellular vesicles (EVs) ameliorate the cellular and physiological hallmarks of aging in senescent cells. In addition, based on the assumption that extracellular matrix (ECM) provides biomechanical stimuli, directly influencing cell behavior, we examine whether ECM-based bio-scaffolds, obtained from decellularized ovaries of young swine, stably maintain the rejuvenated phenotype acquired by cells after exposure to young cell secretome. The results obtained demonstrate that young cells release EVs endowed with the ability to counteract aging. In addition, comparison between young and aged cell secretomes shows a significantly higher miR-200 content in EVs produced using fibroblasts isolated from young donors. The effect exerted by young cell secretome-derived EVs is transient, but can be stabilized using a young ECM microenvironment. This finding indicates a synergistic interaction occurring among molecular effectors and ECM-derived stimuli that cooperate to control a unique program, driving the cell clock. The model described in this paper may represent a useful tool to finely dissect the complex regulations and multiple biochemical and biomechanical cues driving cellular biological age.


Subject(s)
Extracellular Vesicles , Secretome , Animals , Swine , Cellular Senescence/physiology , Aging/physiology , Extracellular Matrix , Fibroblasts , Extracellular Vesicles/metabolism
12.
Phytochemistry ; 212: 113713, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37169138

ABSTRACT

The potential antiviral effects of indole-3-carbinol (I3C), a phytochemical found in Cruciferous vegetables, were investigated. Fibroblasts and epithelial cells were co-cultured on Alvetex® scaffolds, to obtain ad hoc 3D in vitro platforms able to mimic the trachea and intestinal mucosae, which represent the primary structures involved in the coronavirus pathogenesis. The two barriers generated in vitro were treated with various concentrations of I3C for different incubation periods. A protective effect of I3C on both intestinal and trachea models was demonstrated. A significant reduction in the transcription of the two main genes belonging to the Homologous to E6AP C-terminus (HECT)-E3 ligase family members, namely NEDD4 E3 Ubiquitin Protein Ligase (NEDD4) and WW Domain Containing E3 Ubiquitin Protein Ligase 1 (WWP1), which promote virus matrix protein ubiquitination and inhibit viral egression, were detected. These findings indicate I3C potential effect in preventing coronavirus cell egression processes that inhibit viral production. Although further studies are needed to clarify the molecular mechanisms whereby HECT family members control virus life cycle, this work paves the way to the possible therapeutic use of new natural compounds that may reduce the clinical severity of future pandemics.


Subject(s)
Antiviral Agents , Brassicaceae , Coronavirus , Intestines , Models, Biological , Phytochemicals , Trachea , Vegetables , Antiviral Agents/pharmacology , Brassicaceae/chemistry , Coronavirus/drug effects , Coronavirus/metabolism , In Vitro Techniques , Intestines/drug effects , Intestines/metabolism , Intestines/virology , Phytochemicals/pharmacology , Trachea/drug effects , Trachea/metabolism , Trachea/virology , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Vegetables/chemistry , Viral Matrix Proteins/metabolism , Reproducibility of Results , Swine , Animals , Humans , Cell Culture Techniques, Three Dimensional
13.
J Assist Reprod Genet ; 40(5): 1015-1027, 2023 May.
Article in English | MEDLINE | ID: mdl-36933093

ABSTRACT

PURPOSE: This study is to develop a new protocol that combines the use of epigenetic cues and mechanical stimuli to assemble 3D spherical structures, arbitrarily defined "epiBlastoids," whose phenotype is remarkably similar to natural embryos. METHODS: A 3-step approach is used to generate epiBlastoids. In the first step, adult dermal fibroblasts are converted into trophoblast (TR)-like cells, combining the use of 5-azacytidine, to erase the original phenotype, with an ad hoc induction protocol, to drive cells towards TR lineage. In the second step, epigenetic erasing is applied once again, in combination with mechanosensing-related cues, to generate inner cell mass (ICM)-like organoids. Specifically, erased cells are encapsulated into micro-bioreactors to promote 3D cell rearrangement and boost pluripotency. In the third step, TR-like cells are co-cultured with ICM-like spheroids in the same micro-bioreactors. Subsequently, the newly generated embryoids are transferred to microwells to favor epiBlastoid formation. RESULTS: Adult dermal fibroblasts are successfully readdressed towards TR lineage. Cells subjected to epigenetic erasing and encapsulated into micro-bioreactors rearrange in 3D ICM-like structures. Co-culture of TR-like cells and ICM-like spheroids into micro-bioreactors and microwells induces the formation of single structures with uniform shape reminiscent in vivo embryos. CDX2+ cells localized in the out layer of the spheroids, while OCT4+ cells in the inner of the structures. TROP2+ cells display YAP nuclear accumulation and actively transcribed for mature TR markers, while TROP2- cells showed YAP cytoplasmic compartmentalization and expressed pluripotency-related genes. CONCLUSION: We describe the generation of epiBlastoids that may find useful application in the assisted reproduction field.


Subject(s)
Blastocyst , Cues , Humans , Adult , Trophoblasts , Epigenesis, Genetic , Fibroblasts
14.
Stem Cell Rev Rep ; 19(2): 417-429, 2023 02.
Article in English | MEDLINE | ID: mdl-36029367

ABSTRACT

Aging is defined as a complex, multifaceted degenerative process that causes a gradual decline of physiological functions and a rising mortality risk with time. Stopping senescence or even rejuvenating the body represent one of the long-standing human dreams. Somatic cell nuclear transfer as well as cell reprogramming have suggested the possibility to slow or even reverse signs of aging. We exploited miR-200 family ability to induce a transient high plasticity state in human skin fibroblasts isolated from old individuals and we investigated whether this ameliorates cellular and physiological hallmarks of senescence. In addition, based on the assumption that extracellular matrix (ECM) provides biomechanical stimuli directly influencing cell behavior, we examine whether ECM-based bio-scaffolds, obtained from decellularized ovaries of young swine, stably maintain the rejuvenated phenotype acquired by cells after miR-200 exposure. The results show the existence of multiple factors that cooperate to control a unique program, driving the cell clock. In particular, miR-200 family directly regulates the molecular mechanisms erasing cell senescence. However, this effect is transient, reversible, and quickly lost. On the other hand, the use of an adequate young microenvironment stabilizes the miR-200-mediated rejuvenating effects, suggesting that synergistic interactions occur among molecular effectors and ECM-derived biomechanical stimuli. The model here described is a useful tool to better characterize these complex regulations and to finely dissect the multiple and concurring biochemical and biomechanical cues driving the cell biological clock.


Subject(s)
Aging , MicroRNAs , Humans , Animals , Swine , Cellular Senescence/genetics , Extracellular Matrix , Fibroblasts , MicroRNAs/genetics
15.
Phytochemistry ; 204: 113459, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36183866

ABSTRACT

Carotenoids are among the best-known pigments in nature, confer color to plants and animals, and are mainly derived from photosynthetic bacteria, fungi, algae, plants. Mammals cannot synthesize carotenoids. Carotenoids' source is only alimentary and after their assumption, they are mainly converted in retinal, retinol and retinoic acid, collectively known also as pro-vitamins and vitamin A, which play an essential role in tissue growth and regulate different aspects of the reproductive functions. However, their mechanisms of action and potential therapeutic effects are still unclear. This review aims to clarify the role of carotenoids in the male and female reproductive functions in species of veterinary interest. In female, carotenoids and their derivatives regulate not only folliculogenesis and oogenesis but also steroidogenesis. Moreover, they improve fertility by decreasing the risk of embryonic mortality. In male, retinol and retinoic acids activate molecular pathways related to spermatogenesis. Deficiencies of these vitamins have been correlated with degeneration of testis parenchyma with consequent absence of the mature sperm. Carotenoids have also been considered anti-antioxidants as they ameliorate the effect of free radicals. The mechanisms of action seem to be exerted by activating Kit and Stra8 pathways in both female and male. In conclusion, carotenoids have potentially beneficial effects for ameliorating ovarian and testes function.

16.
Nanomaterials (Basel) ; 12(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35159690

ABSTRACT

Advances in medical care, improvements in sanitation, and rising living standards contribute to increased life expectancy. Although this reflects positive human development, it also poses new challenges. Among these, reproductive aging is gradually becoming a key health issue because the age of menopause has remained constant at ~50 years, leading women to live longer in suboptimal endocrine conditions. An adequate understanding of ovarian senescence mechanisms is essential to prevent age-related diseases and to promote wellbeing, health, and longevity in women. We here analyze the impact of aging on the ovarian extracellular matrix (ECM), and we demonstrate significant changes in its composition and organization with collagen, glycosaminoglycans, and laminins significantly incremented, and elastin, as well as fibronectin, decreased. This is accompanied by a dynamic response in gene expression levels of the main ECM- and protease-related genes, indicating a direct impact of aging on the transcription machinery. Furthermore, in order to study the mechanisms driving aging and identify possible strategies to counteract ovarian tissue degeneration, we here described the successful production of a 3D ECM-based biological scaffold that preserves the structural modifications taking place in vivo and that represents a powerful high predictive in vitro model for reproductive aging and its prevention.

17.
Reprod Fertil Dev ; 34(3): 331-342, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35086635

ABSTRACT

Fertility preservation methods for prepubertal women about to undergo gonadotoxic chemo and/or radiation therapy are limited. Therefore, the aim of this study was to investigate the feasibility to develop an alternative fertility preservation method based on an ex vivo perfusion platform for whole ewe ovaries. Thirteen ewe ovaries were divided into two groups (group 1 and 2) that were perfused in a bioreactor for up to 7days. Group 1 (n =3) were stimulated with human menopausal gonadotropin (hMG) administered in single daily dose, while group 2 (n =10) were stimulated continuously for 24h. The perfused ovaries in group 1 showed no significant differences in follicular density, sub-follicular morphology and oocyte quality after ischaemia and after ex vivo perfusion compared with non-perfused control ovaries. The perfused ovaries in group 2 showed a significant decrease in the follicular reserve and oocyte quality compared with the control group. In total, 16 GV-MI oocytes were retrieved from both groups. This study describes for the first time the ex vivo maintenance of viable follicles of ewe ovaries with oocyte integrity and the retrieval of oocytes after ex vivo hormonal perfusion with two different protocols for up to 7days.


Subject(s)
Fertility Preservation , Animals , Female , Fertility Preservation/methods , Oocyte Retrieval , Oocytes , Ovary , Perfusion , Sheep
18.
Methods Mol Biol ; 2436: 157-165, 2022.
Article in English | MEDLINE | ID: mdl-33950378

ABSTRACT

Long-segment airway stenosis as well as their neoplastic transformation is life-threatening and still currently represent unsolved clinical problems. Indeed, despite several attempts, definitive surgical procedures are not presently available, and a suitable tracheal reconstruction or replacement remains an urgent clinical need. A possible innovative strategic solution to restore upper airway function may be represented by the creation of a bioprosthetic trachea, obtained through the combination of tissue engineering and regenerative medicine.Here we describe a two-step protocol for the ex vivo generation of tracheal segments. The first step involves the application of a decellularization technique that allows for the production of a naturally derived extracellular matrix (ECM)-based bio-scaffold, that maintains the macro- and micro-architecture as well as 9 the matrix-related signals distinctive of the original tissue. In the second step chondrocytes are seeded onto decellularized trachea, using a rotating bioreactor to ensure a correct scaffold repopulation.This multi-step approach represents a powerful tool for in vitro reconstruction of a bioengineered trachea that may constitute a promising solution to restore upper airway function. In addition, the procedures here described allow for the creation of a suitable 3D platform that may find useful applications, both for toxicological studies as well as organ transplantation strategies.


Subject(s)
Chondrocytes , Tissue Engineering , Tissue Scaffolds , Trachea , Bioreactors , Chondrocytes/cytology , Prostheses and Implants , Prosthesis Design , Tissue Engineering/methods , Trachea/cytology , Trachea/surgery
19.
Theriogenology ; 176: A1, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34728056
20.
Front Vet Sci ; 8: 706106, 2021.
Article in English | MEDLINE | ID: mdl-34350230

ABSTRACT

The first differentiation event in mammalian embryos is the formation of the trophectoderm, which is the progenitor of the outer epithelial components of the placenta, and which supports the fetus during the intrauterine life. However, the epigenetic and paracrine controls at work in trophectoderm differentiation are still to be fully elucidated and the creation of dedicated in vitro models is desirable to increase our understanding. Here we propose a novel approach based on the epigenetic conversion of adult dermal fibroblasts into trophoblast-like cells. The method combines the use of epigenetic erasing with an ad hoc differentiation protocol. Dermal fibroblasts are erased with 5-azacytidine (5-aza-CR) that confers cells a transient high plasticity state. They are then readdressed toward the trophoblast (TR) phenotype, using MEF conditioned medium, supplemented with bone morphogenetic protein 4 (BMP4) and inhibitors of the Activin/Nodal and FGF2 signaling pathways in low O2 conditions. The method here described allows the generation of TR-like cells from easily accessible material, such as dermal fibroblasts, that are very simply propagated in vitro. Furthermore, the strategy proposed is free of genetic modifications that make cells prone to instability and transformation. The TR model obtained may also find useful application in order to better characterize embryo implantation mechanisms and developmental disorders based on TR defects.

SELECTION OF CITATIONS
SEARCH DETAIL
...