Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Med ; 219(1)2022 01 03.
Article in English | MEDLINE | ID: mdl-34919140

ABSTRACT

Metastasis is the major cause of death in cancer patients. Circulating tumor cells need to migrate through the endothelial layer of blood vessels to escape the hostile circulation and establish metastases at distant organ sites. Here, we identified the membrane-bound metalloprotease ADAM17 on endothelial cells as a key driver of metastasis. We show that TNFR1-dependent tumor cell-induced endothelial cell death, tumor cell extravasation, and subsequent metastatic seeding is dependent on the activity of endothelial ADAM17. Moreover, we reveal that ADAM17-mediated TNFR1 ectodomain shedding and subsequent processing by the γ-secretase complex is required for the induction of TNF-induced necroptosis. Consequently, genetic ablation of ADAM17 in endothelial cells as well as short-term pharmacological inhibition of ADAM17 prevents long-term metastases formation in the lung. Thus, our data identified ADAM17 as a novel essential regulator of necroptosis and as a new promising target for antimetastatic and advanced-stage cancer therapies.


Subject(s)
ADAM17 Protein/antagonists & inhibitors , Endothelial Cells/metabolism , Necroptosis , Neoplasms/etiology , Neoplasms/pathology , Animals , Antineoplastic Agents/pharmacology , Biomarkers , Biomarkers, Tumor , Cell Communication , Cell Death , Disease Susceptibility/immunology , Humans , Necroptosis/genetics , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasm Seeding , Neoplasms/metabolism , Neoplasms/therapy , Proteolysis , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Tumor Necrosis Factor-alpha/metabolism
2.
J Hepatol ; 74(2): 407-418, 2021 02.
Article in English | MEDLINE | ID: mdl-32987028

ABSTRACT

BACKGROUND & AIMS: Interleukin (IL)-6 cytokine family members contribute to inflammatory and regenerative processes. Engagement of the signaling receptor subunit gp130 is common to almost all members of the family. In the liver, all major cell types respond to IL-6-type cytokines, making it difficult to delineate cell type-specific effects. We therefore generated mouse models for liver cell type-specific analysis of IL-6 signaling. METHODS: We produced mice with a Cre-inducible expression cassette encoding a designed pre-dimerized constitutive active gp130 variant. We bred these mice to different Cre-drivers to induce transgenic gp130 signaling in distinct liver cell types: hepatic stellate cells, cholangiocytes/liver progenitor cells or hepatocytes. We phenotyped these mice using multi-omics approaches, immunophenotyping and a bacterial infection model. RESULTS: Hepatocyte-specific gp130 activation led to the upregulation of innate immune system components, including acute-phase proteins. Consequently, we observed peripheral mobilization and recruitment of myeloid cells to the liver. Hepatic myeloid cells, including liver-resident Kupffer cells were instructed to adopt a bactericidal phenotype which ultimately conferred enhanced resistance to bacterial infection in these mice. We demonstrate that persistent hepatocyte-specific gp130 activation resulted in amyloid A amyloidosis in aged mice. In contrast, we did not observe overt effects of hepatic stellate cell- or cholangiocyte/liver progenitor cell-specific transgenic gp130 signaling. CONCLUSIONS: Hepatocyte-specific gp130 activation alone is sufficient to trigger a robust innate immune response in the absence of NF-κB activation. We therefore conclude that gp130 engagement, e.g. by IL-6 trans-signaling, represents a safe-guard mechanism in innate immunity. LAY SUMMARY: Members of the interleukin-6 cytokine family signal via the receptor subunit gp130 and are involved in multiple processes in the liver. However, as several liver cell types respond to interleukin-6 family cytokines, it is difficult to delineate cell type-specific effects. Using a novel mouse model, we provide evidence that hepatocyte-specific gp130 activation is sufficient to trigger a robust systemic innate immune response.


Subject(s)
Cytokine Receptor gp130/metabolism , Hepatocytes/metabolism , Immunity, Innate/physiology , Interleukin-6/immunology , Liver , STAT3 Transcription Factor/metabolism , Acute-Phase Reaction/immunology , Animals , Hepatocytes/classification , Liver/immunology , Liver/metabolism , Liver/pathology , Mice , Mice, Transgenic , Models, Animal , Signal Transduction/immunology
3.
Neuro Oncol ; 22(7): 955-966, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32064501

ABSTRACT

BACKGROUND: Brain metastasis (BM) in non-small-cell lung cancer (NSCLC) has a very poor prognosis. Recent studies have demonstrated the importance of cell adhesion molecules in tumor metastasis. The aim of our study was to investigate the role of activated leukocyte cell adhesion molecule (ALCAM) in BM formation in NSCLC. METHODS: Immunohistochemical analysis was performed on 143 NSCLC primary tumors and BM. A correlation between clinicopathological parameters and survival was developed. Biological properties of ALCAM were assessed in vitro by gene ablation using CRISPR/Cas9 technology in the NCI-H460 NSCLC cell line and in vivo by intracranial and intracardial cell injection of NCI-H460 cells in NMRI-Foxn1nu/nu mice. RESULTS: ALCAM expression was significantly upregulated in NSCLC brain metastasis (P = 0.023) with a de novo expression of ALCAM in 31.2% of BM. Moderate/strong ALCAM expression in both primary NSCLC and brain metastasis was associated with shortened survival. Functional analysis of an ALCAM knock-out (KO) cell line showed a significantly decreased cell adhesion capacity to human brain endothelial cells by 38% (P = 0.045). In vivo studies showed significantly lower tumor cell dissemination in mice injected with ALCAM-KO cells in both mouse models, and both the number and size of BM were significantly diminished in ALCAM depleted tumors. CONCLUSIONS: Our findings suggest that elevated levels of ALCAM expression promote BM formation in NSCLC through increased tumor cell dissemination and interaction with the brain endothelial cells. Therefore, ALCAM could be targeted to reduce the occurrence of BM. KEY POINTS: 1. ALCAM expression associates with poor prognosis and brain metastasis in NSCLC.2. ALCAM mediates interaction of NSCLC tumor cells with brain vascular endothelium.3. ALCAM might represent a novel preventive target to reduce the occurrence of BM in NSCLC.


Subject(s)
Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Activated-Leukocyte Cell Adhesion Molecule , Animals , Brain Neoplasms/secondary , Endothelial Cells , Endothelium, Vascular , Female , Humans , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...