Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 19(6): e1010815, 2023 06.
Article in English | MEDLINE | ID: mdl-37363926

ABSTRACT

In prostate cancer, loss of the tumour suppressor gene, Retinoblastoma (Rb), and consequent activation of transcription factor E2F1 typically occurs at a late-stage of tumour progression. It appears to regulate a switch to an androgen-independent form of cancer, castration-resistant prostate cancer (CRPC), which frequently still requires androgen receptor (AR) signalling. We have previously shown that upon mating, binucleate secondary cells (SCs) of the Drosophila melanogaster male accessory gland (AG), which share some similarities with prostate epithelial cells, switch their growth regulation from a steroid-dependent to a steroid-independent form of Ecdysone Receptor (EcR) control. This physiological change induces genome endoreplication and allows SCs to rapidly replenish their secretory compartments, even when ecdysone levels are low because the male has not previously been exposed to females. Here, we test whether the Drosophila Rb homologue, Rbf, and E2F1 regulate this switch. Surprisingly, we find that excess Rbf activity reversibly suppresses binucleation in adult SCs. We also demonstrate that Rbf, E2F1 and the cell cycle regulators, Cyclin D (CycD) and Cyclin E (CycE), are key regulators of mating-dependent SC endoreplication, as well as SC growth in both virgin and mated males. Importantly, we show that the CycD/Rbf/E2F1 axis requires the EcR, but not ecdysone, to trigger CycE-dependent endoreplication and endoreplication-associated growth in SCs, mirroring changes seen in CRPC. Furthermore, Bone Morphogenetic Protein (BMP) signalling, mediated by the BMP ligand Decapentaplegic (Dpp), intersects with CycD/Rbf/E2F1 signalling to drive endoreplication in these fly cells. Overall, our work reveals a signalling switch, which permits rapid growth of SCs and increased secretion after mating, independently of previous exposure to females. The changes observed share mechanistic parallels with the pathological switch to hormone-independent AR signalling seen in CRPC, suggesting that the latter may reflect the dysregulation of a currently unidentified physiological process.


Subject(s)
Drosophila Proteins , Prostatic Neoplasms, Castration-Resistant , Humans , Animals , Female , Male , Drosophila/metabolism , Drosophila melanogaster/metabolism , Prostate/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Endoreduplication , Ecdysone/genetics , Ecdysone/metabolism , E2F1 Transcription Factor/genetics , Transcription Factors/genetics , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism
2.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Article in English | MEDLINE | ID: mdl-33495334

ABSTRACT

Seminal fluid plays an essential role in promoting male reproductive success and modulating female physiology and behavior. In the fruit fly, Drosophila melanogaster, Sex Peptide (SP) is the best-characterized protein mediator of these effects. It is secreted from the paired male accessory glands (AGs), which, like the mammalian prostate and seminal vesicles, generate most of the seminal fluid contents. After mating, SP binds to spermatozoa and is retained in the female sperm storage organs. It is gradually released by proteolytic cleavage and induces several long-term postmating responses, including increased ovulation, elevated feeding, and reduced receptivity to remating, primarily signaling through the SP receptor (SPR). Here, we demonstrate a previously unsuspected SPR-independent function for SP. We show that, in the AG lumen, SP and secreted proteins with membrane-binding anchors are carried on abundant, large neutral lipid-containing microcarriers, also found in other SP-expressing Drosophila species. These microcarriers are transferred to females during mating where they rapidly disassemble. Remarkably, SP is a key microcarrier assembly and disassembly factor. Its absence leads to major changes in the seminal proteome transferred to females upon mating. Males expressing nonfunctional SP mutant proteins that affect SP's binding to and release from sperm in females also do not produce normal microcarriers, suggesting that this male-specific defect contributes to the resulting widespread abnormalities in ejaculate function. Our data therefore reveal a role for SP in formation of seminal macromolecular assemblies, which may explain the presence of SP in Drosophila species that lack the signaling functions seen in Dmelanogaster.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Lipids/chemistry , Microspheres , Semen/chemistry , Animals , Drosophila Proteins/genetics , Female , Intercellular Signaling Peptides and Proteins/genetics , Male , Mutation/genetics , Proteome/metabolism , Sexual Behavior, Animal , Species Specificity
3.
PLoS Biol ; 17(10): e3000145, 2019 10.
Article in English | MEDLINE | ID: mdl-31589603

ABSTRACT

Male reproductive glands like the mammalian prostate and the paired Drosophila melanogaster accessory glands secrete seminal fluid components that enhance fecundity. In humans, the prostate, stimulated by environmentally regulated endocrine and local androgens, grows throughout adult life. We previously showed that in fly accessory glands, secondary cells (SCs) and their nuclei also grow in adults, a process enhanced by mating and controlled by bone morphogenetic protein (BMP) signalling. Here, we demonstrate that BMP-mediated SC growth is dependent on the receptor for the developmental steroid ecdysone, whose concentration is reported to reflect sociosexual experience in adults. BMP signalling appears to regulate ecdysone receptor (EcR) levels via one or more mechanisms involving the EcR's N terminus or the RNA sequence that encodes it. Nuclear growth in virgin males is dependent on ecdysone, some of which is synthesised in SCs. However, mating induces additional BMP-mediated nuclear growth via a cell type-specific form of hormone-independent EcR signalling, which drives genome endoreplication in a subset of adult SCs. Switching to hormone-independent endoreplication after mating allows growth and secretion to be hyperactivated independently of ecdysone levels in SCs, permitting more rapid replenishment of the accessory gland luminal contents. Our data suggest mechanistic parallels between this physiological, behaviour-induced signalling switch and altered pathological signalling associated with prostate cancer progression.


Subject(s)
Bone Morphogenetic Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Ecdysone/metabolism , Genome, Insect , Insect Proteins/genetics , Receptors, Steroid/genetics , Animals , Bone Morphogenetic Proteins/metabolism , Cell Nucleus/metabolism , Cell Nucleus/ultrastructure , Copulation/physiology , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Female , Gene Expression Regulation, Developmental , Insect Proteins/antagonists & inhibitors , Insect Proteins/metabolism , Male , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptors, Steroid/antagonists & inhibitors , Receptors, Steroid/metabolism , Signal Transduction
4.
PLoS Genet ; 12(10): e1006366, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27727275

ABSTRACT

Regulated secretion by glands and neurons involves release of signalling molecules and enzymes selectively concentrated in dense-core granules (DCGs). Although we understand how many secretagogues stimulate DCG release, how DCG biogenesis is then accelerated to replenish the DCG pool remains poorly characterised. Here we demonstrate that each prostate-like secondary cell (SC) in the paired adult Drosophila melanogaster male accessory glands contains approximately ten large DCGs, which are loaded with the Bone Morphogenetic Protein (BMP) ligand Decapentaplegic (Dpp). These DCGs can be marked in living tissue by a glycophosphatidylinositol (GPI) lipid-anchored form of GFP. In virgin males, BMP signalling is sporadically activated by constitutive DCG secretion. Upon mating, approximately four DCGs are typically released immediately, increasing BMP signalling, primarily via an autocrine mechanism. Using inducible knockdown specifically in adult SCs, we show that secretion requires the Soluble NSF Attachment Protein, SNAP24. Furthermore, mating-dependent BMP signalling not only promotes cell growth, but is also necessary to accelerate biogenesis of new DCGs, restoring DCG number within 24 h. Our analysis therefore reveals an autocrine BMP-mediated feedback mechanism for matching DCG release to replenishment as secretion rates fluctuate, and might explain why in other disease-relevant systems, like pancreatic ß-cells, BMP signalling is also implicated in the control of secretion.


Subject(s)
Bone Morphogenetic Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Secretory Vesicles/genetics , Animals , Autocrine Communication/genetics , Drosophila Proteins/biosynthesis , Drosophila melanogaster/growth & development , Gene Expression Regulation, Developmental/genetics , Male , Neurons/metabolism , Prostate/growth & development , Prostate/metabolism , Secretory Vesicles/metabolism , Sexual Behavior, Animal/physiology , Signal Transduction/genetics
5.
J Cell Biol ; 206(5): 671-88, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25154396

ABSTRACT

Male reproductive glands secrete signals into seminal fluid to facilitate reproductive success. In Drosophila melanogaster, these signals are generated by a variety of seminal peptides, many produced by the accessory glands (AGs). One epithelial cell type in the adult male AGs, the secondary cell (SC), grows selectively in response to bone morphogenetic protein (BMP) signaling. This signaling is involved in blocking the rapid remating of mated females, which contributes to the reproductive advantage of the first male to mate. In this paper, we show that SCs secrete exosomes, membrane-bound vesicles generated inside late endosomal multivesicular bodies (MVBs). After mating, exosomes fuse with sperm (as also seen in vitro for human prostate-derived exosomes and sperm) and interact with female reproductive tract epithelia. Exosome release was required to inhibit female remating behavior, suggesting that exosomes are downstream effectors of BMP signaling. Indeed, when BMP signaling was reduced in SCs, vesicles were still formed in MVBs but not secreted as exosomes. These results demonstrate a new function for the MVB-exosome pathway in the reproductive tract that appears to be conserved across evolution.


Subject(s)
Bone Morphogenetic Proteins/physiology , Drosophila Proteins/physiology , Exosomes/physiology , Genitalia, Male/metabolism , Animals , Drosophila melanogaster , Epithelial Cells/metabolism , Female , Genitalia, Female/cytology , Lysosomes/metabolism , Male , Membrane Fusion , Membrane Microdomains/metabolism , Multivesicular Bodies/metabolism , Protein Transport , Secretory Vesicles/metabolism , Sexual Behavior, Animal , Signal Transduction , Spermatozoa/metabolism , Tetraspanin 30/metabolism , Vacuoles/metabolism
6.
Proc Natl Acad Sci U S A ; 109(47): 19292-7, 2012 Nov 20.
Article in English | MEDLINE | ID: mdl-23129615

ABSTRACT

The paired male accessory glands of Drosophila melanogaster enhance sperm function, stimulate egg production, and reduce female receptivity to other males by releasing a complex mixture of glycoproteins from a secretory epithelium into seminal fluid. A small subpopulation of about 40 specialized secretory cells, called secondary cells, resides at the distal tip of each gland. We show that these cells grow via mechanisms promoted by mating. If aging males mate repeatedly, a subset of these cells delaminates from and migrates along the apical surface of the glandular epithelium toward the proximal end of the gland. Remarkably, these secretory cells can transfer to females with sperm during mating. The frequency of this event increases with age, so that more than 50% of triple-mated, 18-d-old males transfer secondary cells to females. Bone morphogenetic protein signaling specifically in secondary cells is needed to drive all of these processes and is required for the accessory gland to produce its normal effects on female postmating behavior in multiply mated males. We conclude that secondary cells are secretory cells with unusual migratory properties that can allow them to be transferred to females, and that these properties are a consequence of signaling that is required for secondary cells to maintain their normal reproductive functions as males age and mate.


Subject(s)
Animal Structures/cytology , Bone Morphogenetic Proteins/metabolism , Cell Movement , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/metabolism , Sexual Behavior, Animal/physiology , Aging/metabolism , Animal Structures/metabolism , Animals , Cell Proliferation , Female , Male , Signal Transduction
7.
PLoS Genet ; 6(9): e1001087, 2010 Sep 02.
Article in English | MEDLINE | ID: mdl-20824130

ABSTRACT

Abeta peptide accumulation is thought to be the primary event in the pathogenesis of Alzheimer's disease (AD), with downstream neurotoxic effects including the hyperphosphorylation of tau protein. Glycogen synthase kinase-3 (GSK-3) is increasingly implicated as playing a pivotal role in this amyloid cascade. We have developed an adult-onset Drosophila model of AD, using an inducible gene expression system to express Arctic mutant Abeta42 specifically in adult neurons, to avoid developmental effects. Abeta42 accumulated with age in these flies and they displayed increased mortality together with progressive neuronal dysfunction, but in the apparent absence of neuronal loss. This fly model can thus be used to examine the role of events during adulthood and early AD aetiology. Expression of Abeta42 in adult neurons increased GSK-3 activity, and inhibition of GSK-3 (either genetically or pharmacologically by lithium treatment) rescued Abeta42 toxicity. Abeta42 pathogenesis was also reduced by removal of endogenous fly tau; but, within the limits of detection of available methods, tau phosphorylation did not appear to be altered in flies expressing Abeta42. The GSK-3-mediated effects on Abeta42 toxicity appear to be at least in part mediated by tau-independent mechanisms, because the protective effect of lithium alone was greater than that of the removal of tau alone. Finally, Abeta42 levels were reduced upon GSK-3 inhibition, pointing to a direct role of GSK-3 in the regulation of Abeta42 peptide level, in the absence of APP processing. Our study points to the need both to identify the mechanisms by which GSK-3 modulates Abeta42 levels in the fly and to determine if similar mechanisms are present in mammals, and it supports the potential therapeutic use of GSK-3 inhibitors in AD.


Subject(s)
Aging/pathology , Alzheimer Disease/enzymology , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/metabolism , Drosophila Proteins/antagonists & inhibitors , Drosophila melanogaster/enzymology , Glycogen Synthase Kinase 3/antagonists & inhibitors , Aging/drug effects , Alzheimer Disease/mortality , Alzheimer Disease/physiopathology , Amyloid beta-Protein Precursor/toxicity , Animals , Disease Models, Animal , Drosophila Proteins/metabolism , Drosophila melanogaster/drug effects , Genes, Dominant/genetics , Glycogen Synthase Kinase 3/metabolism , Humans , Lithium/pharmacology , Mutant Proteins/toxicity , Nervous System/drug effects , Nervous System/metabolism , Nervous System/pathology , Neurons/drug effects , Neurons/enzymology , Neurons/pathology , Peptides/toxicity , Phosphorylation/drug effects , Phosphoserine/metabolism , tau Proteins/metabolism
8.
J Immunol ; 181(4): 2610-9, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18684951

ABSTRACT

Human complement factor H, consisting of 20 complement control protein (CCP) modules, is an abundant plasma glycoprotein. It prevents C3b amplification on self surfaces bearing certain polyanionic carbohydrates, while complement activation progresses on most other, mainly foreign, surfaces. Herein, locations of binding sites for polyanions and C3b are reexamined rigorously by overexpressing factor H segments, structural validation, and binding assays. As anticipated, constructs corresponding to CCPs 7-8 and 19-20 bind well in heparin-affinity chromatography. However, CCPs 8-9, previously reported to bind glycosaminoglycans, bind neither to heparin resin nor to heparin fragments in gel-mobility shift assays. Introduction of nonnative residues N-terminal to a construct containing CCPs 8-9, identical to those in proteins used in the previous report, converted this module pair to an artificially heparin-binding one. The module pair CCPs 12-13 does not bind heparin appreciably, notwithstanding previous suggestions to the contrary. We further checked CCPs 10-12, 11-14, 13-15, 10-15, and 8-15 for ability to bind heparin but found very low affinity or none. As expected, constructs corresponding to CCPs 1-4 and 19-20 bind C3b amine coupled to a CM5 chip (K(d)s of 14 and 3.5 microM, respectively) or a C1 chip (K(d)s of 10 and 4.5 microM, respectively). Constructs CCPs 7-8 and 6-8 exhibit measurable affinities for C3b according to surface plasmon resonance, although they are weak compared with CCPs 19-20. Contrary to expectations, none of several constructs encompassing modules from CCP 9 to 15 exhibited significant C3b binding in this assay. Thus, we propose a new functional map of factor H.


Subject(s)
Complement C3b/metabolism , Complement Factor H/metabolism , Glycosaminoglycans/metabolism , Binding Sites/immunology , Chromatography, Affinity , Complement C3b/chemistry , Complement Factor H/chemistry , Complement Factor H/genetics , Complement Pathway, Alternative/immunology , Complement System Proteins/chemistry , Complement System Proteins/metabolism , Glycosaminoglycans/biosynthesis , Glycosaminoglycans/genetics , Heparin/metabolism , Humans , Magnetic Resonance Spectroscopy , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Peptide Mapping , Polyelectrolytes , Polymers/metabolism , Protein Folding , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...