Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 12(4)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38672273

ABSTRACT

Cell therapy is at the forefront of biomedicine in oncology and regenerative medicine. However, there are still significant challenges to their wider clinical application such as limited efficacy, side effects, and logistical difficulties. One of the potential approaches that could overcome these problems is based on extracellular vesicles (EVs) as a cell-free therapy modality. One of the major obstacles in the translation of EVs into practice is their low yield of production, which is insufficient to achieve therapeutic amounts. Here, we evaluated two primary approaches of artificial vesicle induction in primary T cells and the SupT1 cell line-cytochalasin B as a chemical inducer and ultrasonication as a physical inducer. We found that both methods are capable of producing artificial vesicles, but cytochalasin B induction leads to vesicle yield compared to natural secretion, while ultrasonication leads to a three-fold increase in particle yield. Cytochalasin B induces the formation of vesicles full of cytoplasmic compartments without nuclear fraction, while ultrasonication induces the formation of particles rich in membranes and membrane-related components such as CD3 or HLAII proteins. The most effective approach for T-cell induction in terms of the number of vesicles seems to be the combination of anti-CD3/CD28 antibody activation with ultrasonication, which leads to a seven-fold yield increase in particles with a high content of functionally important proteins (CD3, granzyme B, and HLA II).

2.
Mol Biol Res Commun ; 12(4): 139-148, 2023.
Article in English | MEDLINE | ID: mdl-37886737

ABSTRACT

The most often diagnosed and fatal malignancy in women is breast cancer. The International Agency for Research on Cancer (IARC) estimates that there are 2.26 million new cases of cancer in 2020. Adoptive cell therapy using T cells with chimeric antigen receptor shows potential for the treatment of solid tumors, such as breast cancer. In this work the effectiveness of CAR-T cells against monolayer and three-dimensional bioprinted tumor-like structures made of modified MCF-7 breast cancer cells was assessed. The cytokine profile of supernatants after co-cultivation of MCF-7 tumor cell models with CAR-T cells was also measured to reveal the inflammatory background associated with this interaction.

3.
Biomedicines ; 11(2)2023 Feb 19.
Article in English | MEDLINE | ID: mdl-36831162

ABSTRACT

In recent years, adoptive cell therapy has gained a new perspective of application due to the development of technologies and the successful clinical use of CAR-T cells for the treatment of patients with malignant B-cell neoplasms. However, the efficacy of CAR-T therapy against solid tumor remains a major scientific and clinical challenge. In this work, we evaluated the cytotoxicity of 2nd generation CAR-T cells against modified solid tumors cell lines-lung adenocarcinoma cell line H522, prostate carcinoma PC-3M, breast carcinoma MDA-MB-231, and epidermoid carcinoma A431 cell lines transduced with lentiviruses encoding red fluorescent protein Katushka2S and the CD19 antigen. A correlation was demonstrated between an increase in the secretion of proinflammatory cytokines and a decrease in the confluence of tumor cells' monolayer. The proposed approach can potentially be applied to preliminarily assess CAR-T cell efficacy for the treatment of solid tumors and estimate the risks of developing cytokine release syndrome.

SELECTION OF CITATIONS
SEARCH DETAIL
...