Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Med ; 21(10): 1216-22, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26413780

ABSTRACT

By convention, CD4+ T lymphocytes recognize foreign and self peptides derived from internalized antigens in combination with major histocompatibility complex class II molecules. Alternative pathways of epitope production have been identified, but their contributions to host defense have not been established. We show here in a mouse infection model that the CD4+ T cell response to influenza, critical for durable protection from the virus, is driven principally by unconventional processing of antigen synthesized within the infected antigen-presenting cell, not by classical processing of endocytosed virions or material from infected cells. Investigation of the cellular components involved, including the H2-M molecular chaperone, the proteasome and γ-interferon-inducible lysosomal thiol reductase revealed considerable heterogeneity in the generation of individual epitopes, an arrangement that ensures peptide diversity and broad CD4+ T cell engagement. These results could fundamentally revise strategies for rational vaccine design and may lead to key insights into the induction of autoimmune and anti-tumor responses.


Subject(s)
Antigens/immunology , CD4-Positive T-Lymphocytes/immunology , Influenza, Human/immunology , Animals , Disease Models, Animal , Humans , Mice , Virion/immunology
2.
Nat Immunol ; 15(8): 777-88, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24997565

ABSTRACT

A characteristic feature of asthma is the aberrant accumulation, differentiation or function of memory CD4(+) T cells that produce type 2 cytokines (TH2 cells). By mapping genome-wide histone modification profiles for subsets of T cells isolated from peripheral blood of healthy and asthmatic individuals, we identified enhancers with known and potential roles in the normal differentiation of human TH1 cells and TH2 cells. We discovered disease-specific enhancers in T cells that differ between healthy and asthmatic individuals. Enhancers that gained the histone H3 Lys4 dimethyl (H3K4me2) mark during TH2 cell development showed the highest enrichment for asthma-associated single nucleotide polymorphisms (SNPs), which supported a pathogenic role for TH2 cells in asthma. In silico analysis of cell-specific enhancers revealed transcription factors, microRNAs and genes potentially linked to human TH2 cell differentiation. Our results establish the feasibility and utility of enhancer profiling in well-defined populations of specialized cell types involved in disease pathogenesis.


Subject(s)
Asthma/genetics , Asthma/immunology , Genetic Predisposition to Disease , Th1 Cells/immunology , Th2 Cells/immunology , Adolescent , Adult , Aged , Binding Sites/genetics , Binding Sites/immunology , Cell Differentiation/immunology , Cells, Cultured , Core Binding Factor Alpha 3 Subunit/genetics , DNA Methylation/genetics , Epigenomics , Female , GATA3 Transcription Factor/genetics , Genome-Wide Association Study , Histones/genetics , Histones/immunology , Humans , Immunologic Memory/immunology , Male , MicroRNAs/genetics , Middle Aged , Polymorphism, Single Nucleotide , Promoter Regions, Genetic/genetics , Protein Binding/genetics , Protein Binding/immunology , Sequence Analysis, RNA , T-Box Domain Proteins/genetics , Young Adult
3.
Front Immunol ; 4: 464, 2013 Dec 16.
Article in English | MEDLINE | ID: mdl-24379819

ABSTRACT

The standard model of Major Histocompatibility Complex class II (MHCII)-restricted antigen processing depicts a straightforward, linear pathway: internalized antigens are converted into peptides that load in a chaperone dependent manner onto nascent MHCII in the late endosome, the complexes subsequently trafficking to the cell surface for recognition by CD4(+) T cells (TCD4+). Several variations on this theme, both moderate and radical, have come to light but these alternatives have remained peripheral, the conventional pathway generally presumed to be the primary driver of TCD4+ responses. Here we continue to press for the conceptual repositioning of these alternatives toward the center while proposing that MHCII processing be thought of less in terms of discrete pathways and more in terms of a network whose major and minor conduits are variable depending upon many factors, including the epitope, the nature of the antigen, the source of the antigen, and the identity of the antigen-presenting cell.

SELECTION OF CITATIONS
SEARCH DETAIL
...