Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 892: 164452, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37245830

ABSTRACT

The recovery of nitrogen and phosphorus is important to promote circular economy in wastewater treatment plants (WWTPs). In this study, the life cycle assessment (LCA) and techno-economic assessment (TEA) of a novel pilot-scale plant aimed at recovering ammonium nitrate and struvite for subsequent application in agriculture was conducted. The nutrient recovery scheme was implemented in the sludge line of the WWTP and included (i) struvite crystallisation and (ii) ion-exchange process combined with gas permeable membrane contactor. The LCA showed that using a fertilizer solution containing the recovered nutrients was environmentally better in most of the impact categories evaluated. Ammonium nitrate was the most important environmental contributor when using the recovered fertilizer solution as a result of the high consumption of chemicals needed for its production. The TEA illustrated that the implementation of the nutrient recovery scheme in the WWTP featured a negative net present value (NPV), primarily attributed to the high consumption of chemicals (representing 30 % of the gross cost). However, the implementation of the nutrient recovery scheme in the WWTP could be economically favourable if the cost of ammonium nitrate and struvite increased to 0.68 and 0.58 €/kg, respectively. The results of this pilot-scale study highlight that nutrient recovery considering the whole value chain for fertilizer application can be an attractive full-scale alternative from a sustainability point of view.


Subject(s)
Wastewater , Water Purification , Waste Disposal, Fluid/methods , Struvite , Fertilizers , Phosphorus , Water Purification/methods , Nutrients , Agriculture
2.
Polymers (Basel) ; 14(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36365630

ABSTRACT

The use of recycled opaque PET (r-O-PET, with TiO2) as a reinforcement for the recycled polypropylene matrix (r-PP) was evaluated through the life cycle assessment according to different scenarios corresponding to two different recycled blends and considered two virgin raw plastic material as reference materials when comparing the environmental performance of the proposed treatments. The results indicate that the environmental performance was quite different for each blend, since the additional extrusion process required in scenario 2 (blend with TiO2) causes all impact categories analysed to report higher values when compared with scenario 1 (blend without TiO2). The stage that contributes the most corresponds to the different extrusion processes included in both recycling blends, representing at least 80% of the total for global warming. Compared with virgin raw materials, the blend with TiO2 showed better performance in all the impact categories analysed in comparison with virgin PA66, while the blend without TiO2 showed the opposite trend when compared to PP. Furthermore, the fact that the upcycling treatment was carried out on a pilot scale provides room for improvement when implemented on a full scale. It is worth noting the high energy consumption of the treatment processes and their associated cost, in addition to the market cost of virgin raw materials, however, when considering the environmental cost of raw materials, it is observed that when substituting virgin materials PP and PA66 for the blends evaluated in this study results in a reduction of the environmental price of up to 2.5 times.

SELECTION OF CITATIONS
SEARCH DETAIL
...