Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Immunol Res ; 10(5): 656-669, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35201318

ABSTRACT

Therapeutic combinations to alter immunosuppressive, solid tumor microenvironments (TME), such as in breast cancer, are essential to improve responses to immune checkpoint inhibitors (ICI). Entinostat, an oral histone deacetylase inhibitor, has been shown to improve responses to ICIs in various tumor models with immunosuppressive TMEs. The precise and comprehensive alterations to the TME induced by entinostat remain unknown. Here, we employed single-cell RNA sequencing on HER2-overexpressing breast tumors from mice treated with entinostat and ICIs to fully characterize changes across multiple cell types within the TME. This analysis demonstrates that treatment with entinostat induced a shift from a protumor to an antitumor TME signature, characterized predominantly by changes in myeloid cells. We confirmed myeloid-derived suppressor cells (MDSC) within entinostat-treated tumors associated with a less suppressive granulocytic (G)-MDSC phenotype and exhibited altered suppressive signaling that involved the NFκB and STAT3 pathways. In addition to MDSCs, tumor-associated macrophages were epigenetically reprogrammed from a protumor M2-like phenotype toward an antitumor M1-like phenotype, which may be contributing to a more sensitized TME. Overall, our in-depth analysis suggests that entinostat-induced changes on multiple myeloid cell types reduce immunosuppression and increase antitumor responses, which, in turn, improve sensitivity to ICIs. Sensitization of the TME by entinostat could ultimately broaden the population of patients with breast cancer who could benefit from ICIs.


Subject(s)
Breast Neoplasms , Myeloid-Derived Suppressor Cells , Animals , Benzamides/pharmacology , Breast Neoplasms/metabolism , Female , Humans , Immunosuppression Therapy , Mice , Pyridines , Tumor Microenvironment
2.
Cancer Discov ; 10(1): 86-103, 2020 01.
Article in English | MEDLINE | ID: mdl-31601552

ABSTRACT

Hematogenous metastasis is initiated by a subset of circulating tumor cells (CTC) shed from primary or metastatic tumors into the blood circulation. Thus, CTCs provide a unique patient biopsy resource to decipher the cellular subpopulations that initiate metastasis and their molecular properties. However, one crucial question is whether CTCs derived and expanded ex vivo from patients recapitulate human metastatic disease in an animal model. Here, we show that CTC lines established from patients with breast cancer are capable of generating metastases in mice with a pattern recapitulating most major organs from corresponding patients. Genome-wide sequencing analyses of metastatic variants identified semaphorin 4D as a regulator of tumor cell transmigration through the blood-brain barrier and MYC as a crucial regulator for the adaptation of disseminated tumor cells to the activated brain microenvironment. These data provide the direct experimental evidence of the promising role of CTCs as a prognostic factor for site-specific metastasis. SIGNIFICANCE: Interests abound in gaining new knowledge of the physiopathology of brain metastasis. In a direct metastatic tropism analysis, we demonstrated that ex vivo-cultured CTCs from 4 patients with breast cancer showed organotropism, revealing molecular features that allow a subset of CTCs to enter and grow in the brain.This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Antigens, CD/metabolism , Brain Neoplasms/secondary , Breast Neoplasms/pathology , Glutathione Peroxidase/metabolism , Neoplastic Cells, Circulating/pathology , Proto-Oncogene Proteins c-myc/metabolism , Semaphorins/metabolism , Tumor Microenvironment , Animals , Antigens, CD/genetics , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Glutathione Peroxidase/genetics , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Neoplastic Cells, Circulating/metabolism , Oxidative Stress , Proto-Oncogene Proteins c-myc/genetics , Semaphorins/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , Glutathione Peroxidase GPX1
3.
Mol Cancer Ther ; 16(9): 1877-1886, 2017 09.
Article in English | MEDLINE | ID: mdl-28655784

ABSTRACT

Thrombocytopenia is a common adverse event in cancer patients treated with antibody-drug conjugates (ADC), including AGS-16C3F, an ADC targeting ENPP3 (ectonucleotide pyrophosphatase/phosphodiesterase-3) and trastuzumab emtansine (T-DM1). This study aims to elucidate the mechanism of action of ADC-induced thrombocytopenia. ENPP3 expression in platelets and megakaryocytes (MK) was investigated and shown to be negative. The direct effect of AGS-16C3F on platelets was evaluated using platelet rich plasma following the expression of platelet activation markers. Effects of AGS-16C3F, T-DM1, and control ADCs on maturing megakaryocytes were evaluated in an in vitro system in which human hematopoietic stem cells (HSC) were differentiated into MKs. AGS-16C3F, like T-DM1, did not affect platelets directly, but inhibited MK differentiation by the activity of Cys-mcMMAF, its active metabolite. FcγRIIA did not appear to play an important role in ADC cytotoxicity to differentiating MKs. AGS-16C3F, cytotoxic to MKs, did not bind to FcγRIIA on MKs. Blocking the interaction of T-DM1 with FcγRIIA did not prevent the inhibition of MK differentiation and IgG1-mcMMAF was not as cytotoxic to MKs despite binding to FcγRIIA. Several lines of evidence suggest that internalization of AGS-16C3F into MKs is mediated by macropinocytosis. Macropinocytosis activity of differentiating HSCs correlated with cell sensitivity to AGS-16C3F. AGS-16C3F was colocalized with a macropinocytosis marker, dextran-Texas Red in differentiating MKs. Ethyl isopropyl amiloride (EIPA), a macropinocytosis inhibitor, blocked internalization of dextran-Texas Red and AGS-16C3F. These data support the notion that inhibition of MK differentiation via macropinocytosis-mediated internalization plays a role in ADC-induced thrombocytopenia. Mol Cancer Ther; 16(9); 1877-86. ©2017 AACRSee related article by Zhao et al., p. 1866.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Cell Differentiation/drug effects , Immunoconjugates/pharmacology , Megakaryocytes/cytology , Megakaryocytes/drug effects , Pinocytosis , Antineoplastic Agents, Immunological/adverse effects , Blood Platelets/drug effects , Blood Platelets/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Humans , Immunoconjugates/adverse effects , Megakaryocytes/metabolism , Platelet Activation/drug effects , Protein Transport , Receptors, IgG/metabolism , Thrombocytopenia/blood , Thrombocytopenia/chemically induced
4.
Mol Cancer Ther ; 16(9): 1866-1876, 2017 09.
Article in English | MEDLINE | ID: mdl-28522588

ABSTRACT

Neutropenia is a common adverse event in cancer patients treated with antibody-drug conjugates (ADC) and we aimed to elucidate the potential mechanism of this toxicity. To investigate whether ADCs affect neutrophil production from bone marrow, an in vitro assay was developed in which hematopoietic stem cells (HSC) were differentiated to neutrophils. Several antibodies against targets absent in HSCs and neutrophils were conjugated to MMAE via a cleavable valine-citrulline linker (vcMMAE-ADC) or MMAF via a noncleavable maleimidocaproyl linker (mcMMAF-ADC), and their cytotoxicity was tested in the neutrophil differentiation assay. Results showed that HSCs had similar sensitivity to vcMMAE-ADCs and mcMMAF-ADCs; however, vcMMAE-ADCs were more cytotoxic to differentiating neutrophils than the same antibody conjugated to mcMMAF. This inhibitory effect was not mediated by internalization of ADC either by macropinocytosis or FcγRs. Our results suggested that extracellular proteolysis of the cleavable valine-citrulline linker is responsible for the cytotoxicity to differentiating neutrophils. Mass spectrometry analyses indicated that free MMAE was released from vcMMAE-ADCs in the extracellular compartment when they were incubated with differentiating neutrophils or neutrophil conditioned medium, but not with HSC-conditioned medium. Using different protease inhibitors, our data suggested that serine, but not cysteine proteases, were responsible for the cleavage. In vitro experiments demonstrated that the purified serine protease, elastase, was capable of releasing free MMAE from a vcMMAE-ADC. Here we propose that ADCs containing protease cleavable linkers can contribute to neutropenia via extracellular cleavage mediated by serine proteases secreted by differentiating neutrophils in bone marrow. Mol Cancer Ther; 16(9); 1866-76. ©2017 AACRSee related article by Zhao et al., p. 1877.


Subject(s)
Antineoplastic Agents/adverse effects , Immunoconjugates/adverse effects , Myelopoiesis/drug effects , Neutropenia/blood , Neutropenia/etiology , Neutrophils/drug effects , Animals , Biomarkers , Cell Differentiation/drug effects , Cell Proliferation , Cell Survival/drug effects , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Humans , Immunophenotyping , Mice , Neutrophils/metabolism , Pinocytosis , Receptors, IgG/metabolism , Serine Proteases/metabolism
5.
Anal Biochem ; 386(2): 251-5, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19150324

ABSTRACT

Although various nonviral transfection methods are available, cell toxicity, low transfection efficiency, and high cost remain hurdles for in vitro gene delivery in cultured primary endothelial cells. Recently, unprecedented transfection efficiency for primary endothelial cells has been achieved due to the newly developed nucleofection technology that uses a combination of novel electroporation condition and specific buffer components that stabilize the cells in the electrical field. Despite superior transfection efficiency and cell viability, high cost of the technology has discouraged cardiovascular researchers from liberally adopting this new technology. Here we report that a phosphate-buffered saline (PBS)-based nucleofection method can be used for efficient gene delivery into primary endothelial cells and other types of cells. Comparative analyses of transfection efficiency and cell viability for primary arterial, venous, microvascular, and lymphatic endothelial cells were performed using PBS. Compared with the commercial buffers, PBS can support equally remarkable nucleofection efficiency to both primary and nonprimary cells. Moreover, PBS-mediated nucleofection of small interfering RNA (siRNA) showed more than 90% knockdown of the expression of target genes in primary endothelial cells. We demonstrate that PBS can be an unprecedented economical alternative to the high-cost buffers or nucleofection of various primary and nonprimary cells.


Subject(s)
Electroporation/methods , Endothelial Cells/metabolism , Sodium Chloride/chemistry , Transfection/methods , Buffers , Cell Survival , Humans , Phosphates/chemistry , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...