Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
bioRxiv ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38903096

ABSTRACT

The pair of transcription factors Bcl6-Blimp1 is well-known for follicular T helper (Tfh) cell fate determination, however, the mechanism(s) for Bcl6-independent regulation of CXCR5 during Tfh migration into germinal center (GC) is still unclear. In this study, we uncovered another pair of transcription factors, Bhlhe40-Pou2af1, that regulates CXCR5 expression. Pou2af1 was specifically expressed in Tfh cells whereas Bhlhe40 expression was found high in non-Tfh cells. Pou2af1 promoted Tfh formation and migration into GC by upregulating CXCR5 but not Bcl6, while Bhlhe40 repressed this process by inhibiting Pou2af1 expression. RNA-Seq analysis of antigen-specific Tfh cells generated in vivo confirmed the role of Bhlhe40-Pou2af1 axis in regulating optimal CXCR5 expression. Thus, the regulation of CXCR5 expression and migration of Tfh cells into GC involves a transcriptional regulatory circuit consisting of Bhlhe40 and Pou2af1, which operates independent of the Bcl6-Blimp1 circuit that determines the Tfh cell fate.

2.
bioRxiv ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38903125

ABSTRACT

The Endosomal Sorting Complex Required for Transport (ESCRT) is an evolutionarily conserved machinery that performs reverse-topology membrane scission in cells universally required from cytokinesis to budding of enveloped viruses. Upstream acting ESCRT-I and ALIX control these events and link recruitment of viral and cellular partners to late-acting ESCRT-III CHMP4 through incompletely understood mechanisms. Using structure-function analyses combined with super-resolution imaging, we show that ESCRT-I and ALIX function as distinct helical filaments in vivo . Together, they are essential for optimal structural scaffolding of HIV-1 nascent virions, the retention of viral and human genomes through defined functional interfaces, and recruitment of CHMP4 that itself assembles into corkscrew-like filaments intertwined with ESCRT-I or ALIX helices. Disruption of filament assembly or their conformationally clustered RNA binding interfaces in human cells impaired membrane abscission, resulted in major structural instability and leaked nucleic acid from nascent virions and nuclear envelopes. Thus, ESCRT-I and ALIX function as helical filaments in vivo and serve as both nucleic acid-dependent structural scaffolds as well as ESCRT-III assembly templates. Significance statement: When cellular membranes are dissolved or breached, ESCRT is rapidly deployed to repair membranes to restore the integrity of intracellular compartments. Membrane sealing is ensured by ESCRT-III filaments assembled on the inner face of membrane; a mechanism termed inverse topology membrane scission. This mechanism, initiated by ESCRT-I and ALIX, is universally necessary for cytokinesis, wound repair, budding of enveloped viruses, and more. We show ESCRT-I and ALIX individually oligomerize into helical filaments that cluster newly discovered nucleic acid-binding interfaces and scaffold-in genomes within nascent virions and nuclear envelopes. These oligomers additionally appear to serve as ideal templates for ESCRT-III polymerization, as helical filaments of CHMP4B were found intertwined ESCRT-I or ALIX filaments in vivo . Similarly, corkscrew-like filaments of ALIX are also interwoven with ESCRT-I, supporting a model of inverse topology membrane scission that is synergistically reinforced by inward double filament scaffolding.

3.
Mucosal Immunol ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38729611

ABSTRACT

Resident memory T cells (TRMs) help control local immune homeostasis and contribute to tissue-protective immune responses. The local cues that guide their differentiation and localization are poorly defined. We demonstrate that mucosal vascular addressin cell adhesion molecule 1, a ligand for the gut-homing receptor α4ß7 integrin, in the presence of retinoic acid and transforming growth factor-ß (TGF-ß) provides a co-stimulatory signal that induces blood cluster of differentiation (CD8+ T cells to adopt a TRM-like phenotype. These cells express CD103 (integrin αE) and CD69, the two major TRM cell-surface markers, along with CD101. They also express C-C motif chemokine receptors 5 (CCR5) , C-C motif chemokine receptors 9 (CCR9), and α4ß7, three receptors associated with gut homing. A subset also expresses E-cadherin, a ligand for αEß7. Fluorescent lifetime imaging indicated an αEß7 and E-cadherin cis interaction on the plasma membrane. This report advances our understanding of the signals that drive the differentiation of CD8+ T cells into resident memory T cells and provides a means to expand these cells in vitro, thereby affording an avenue to generate more effective tissue-specific immunotherapies.

4.
Proc Natl Acad Sci U S A ; 121(23): e2403796121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38809710

ABSTRACT

Olfactory receptors (Olfr) are G protein-coupled receptors that are normally expressed on olfactory sensory neurons to detect volatile chemicals or odorants. Interestingly, many Olfrs are also expressed in diverse tissues and function in cell-cell recognition, migration, and proliferation as well as immune responses and disease processes. Here, we showed that many Olfr genes were expressed in the mouse spleen, linked to Plasmodium yoelii genetic loci significantly, and/or had genome-wide patterns of LOD scores (GPLSs) similar to those of host Toll-like receptor genes. Expression of specific Olfr genes such as Olfr1386 in HEK293T cells significantly increased luciferase signals driven by IFN-ß and NF-κB promoters, with elevated levels of phosphorylated TBK1, IRF3, P38, and JNK. Mice without Olfr1386 were generated using the CRISPR/Cas9 method, and the Olfr1386-/- mice showed significantly lower IFN-α/ß levels and longer survival than wild-type (WT) littermates after infection with P. yoelii YM parasites. Inhibition of G protein signaling and P38 activity could affect cyclic AMP-responsive element promoter-driven luciferase signals and IFN-ß mRNA levels in HEK293T cells expressing the Olfr1386 gene, respectively. Screening of malaria parasite metabolites identified nicotinamide adenine dinucleotide (NAD) as a potential ligand for Olfr1386, and NAD could stimulate IFN-ß responses and phosphorylation of TBK1 and STAT1/2 in RAW264.7 cells. Additionally, parasite RNA (pRNA) could significantly increase Olfr1386 mRNA levels. This study links multiple Olfrs to host immune response pathways, identifies a candidate ligand for Olfr1386, and demonstrates the important roles of Olfr1386 in regulating type I interferon (IFN-I) responses during malaria parasite infections.


Subject(s)
Interferon Type I , Malaria , Plasmodium yoelii , Receptors, Odorant , Animals , Mice , Malaria/immunology , Malaria/parasitology , Malaria/metabolism , Humans , HEK293 Cells , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Interferon Type I/metabolism , Interferon Type I/immunology , Mice, Knockout , Signal Transduction , Mice, Inbred C57BL
5.
medRxiv ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38712043

ABSTRACT

Background: Topical corticosteroids (TCS) are first-line therapies for numerous skin conditions. Topical Steroid Withdrawal (TSW) is a controversial diagnosis advocated by patients with prolonged TCS exposure who report severe systemic reactions upon treatment cessation. However, to date there have been no systematic clinical or mechanistic studies to distinguish TSW from other eczematous disorders. Methods: A re-analysis of a previous survey with eczematous skin disease was performed to evaluate potential TSW distinguishing symptoms. We subsequently conducted a pilot study of 16 patients fitting the proposed diagnostic criteria. We then performed: tissue metabolomics, transcriptomics, and immunostaining on skin biopsies; serum metabolomics and cytokine assessments; shotgun metagenomics on microbiome skin swabs; genome sequencing; followed by functional, mechanistic studies using human skin cell lines and mice. Results: Clinically distinct TSW symptoms included burning, flushing, and thermodysregulation. Metabolomics and transcriptomics both implicated elevated NAD+ oxidation stemming from increased expression of mitochondrial complex I and conversion of tryptophan into kynurenine metabolites. These abnormalities were induced by glucocorticoid exposure both in vitro and in a cohort of healthy controls (N=19) exposed to TCS. Targeting complex I via either metformin or the herbal compound berberine improved outcomes in both cell culture and in an open-label case series for patients with TSW. Conclusion: Taken together, our results suggest that TSW has a distinct dermatopathology. While future studies are needed to validate these results in larger cohorts, this work provides the first mechanistic evaluation into TSW pathology, and offers insights into clinical identification, pharmacogenomic candidates, and directed therapeutic strategies.

6.
bioRxiv ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38712171

ABSTRACT

Interferon-stimulated genes (ISGs) comprise a program of immune effectors important for host immune defense. When uncontrolled, ISGs play a central role in interferonopathies and other inflammatory diseases. The mechanisms responsible for turning on ISGs are not completely known. By investigating MATRIN3 (MATR3), a nuclear RNA-binding protein mutated in familial ALS, we found that perturbing MATR3 results in elevated expression of ISGs. Using an integrative approach, we elucidate a pathway that leads to activation of cGAS-STING. This outlines a plausible mechanism for pathogenesis in a subset of ALS, and suggests new diagnostic and therapeutic approaches for this fatal disease.

8.
Nat Immunol ; 25(2): 282-293, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38172257

ABSTRACT

Preserving cells in a functional, non-senescent state is a major goal for extending human healthspans. Model organisms reveal that longevity and senescence are genetically controlled, but how genes control longevity in different mammalian tissues is unknown. Here, we report a new human genetic disease that causes cell senescence, liver and immune dysfunction, and early mortality that results from deficiency of GIMAP5, an evolutionarily conserved GTPase selectively expressed in lymphocytes and endothelial cells. We show that GIMAP5 restricts the pathological accumulation of long-chain ceramides (CERs), thereby regulating longevity. GIMAP5 controls CER abundance by interacting with protein kinase CK2 (CK2), attenuating its ability to activate CER synthases. Inhibition of CK2 and CER synthase rescues GIMAP5-deficient T cells by preventing CER overaccumulation and cell deterioration. Thus, GIMAP5 controls longevity assurance pathways crucial for immune function and healthspan in mammals.


Subject(s)
Ceramides , GTP-Binding Proteins , Animals , Humans , Longevity/genetics , Endothelial Cells/metabolism , Mammals/metabolism
9.
Blood ; 143(15): 1476-1487, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38194689

ABSTRACT

ABSTRACT: Mutations in the small Rho-family guanosine triphosphate hydrolase RAC2, critical for actin cytoskeleton remodeling and intracellular signal transduction, are associated with neonatal severe combined immunodeficiency (SCID), infantile neutrophilic disorder resembling leukocyte adhesion deficiency (LAD), and later-onset combined immune deficiency (CID). We investigated 54 patients (23 previously reported) from 37 families yielding 15 novel RAC2 missense mutations, including one present only in homozygosity. Data were collected from referring physicians and literature reports with updated clinical information. Patients were grouped by presentation: neonatal SCID (n = 5), infantile LAD-like disease (n = 5), or CID (n = 44). Disease correlated to RAC2 activity: constitutively active RAS-like mutations caused neonatal SCID, dominant-negative mutations caused LAD-like disease, whereas dominant-activating mutations caused CID. Significant T- and B-lymphopenia with low immunoglobulins were seen in most patients; myeloid abnormalities included neutropenia, altered oxidative burst, impaired neutrophil migration, and visible neutrophil macropinosomes. Among 42 patients with CID with clinical data, upper and lower respiratory infections and viral infections were common. Twenty-three distinct RAC2 mutations, including 15 novel variants, were identified. Using heterologous expression systems, we assessed downstream effector functions including superoxide production, p21-activated kinase 1 binding, AKT activation, and protein stability. Confocal microscopy showed altered actin assembly evidenced by membrane ruffling and macropinosomes. Altered protein localization and aggregation were observed. All tested RAC2 mutant proteins exhibited aberrant function; no single assay was sufficient to determine functional consequence. Most mutants produced elevated superoxide; mutations unable to support superoxide formation were associated with bacterial infections. RAC2 mutations cause a spectrum of immune dysfunction, ranging from early onset SCID to later-onset combined immunodeficiencies depending on RAC2 activity. This trial was registered at www.clinicaltrials.gov as #NCT00001355 and #NCT00001467.


Subject(s)
Immunologic Deficiency Syndromes , Leukocyte-Adhesion Deficiency Syndrome , Primary Immunodeficiency Diseases , Severe Combined Immunodeficiency , Humans , Infant, Newborn , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/metabolism , Neutrophils/metabolism , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/metabolism , rac GTP-Binding Proteins/genetics , rac GTP-Binding Proteins/metabolism , rac1 GTP-Binding Protein/metabolism , RAC2 GTP-Binding Protein , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/metabolism , Superoxides/metabolism
10.
PLoS Pathog ; 19(12): e1011860, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38064524

ABSTRACT

The CD4 receptor, by stabilizing TCR-MHC II interactions, plays a central role in adaptive immunity. It also serves as the HIV docking receptor. The HIV gp120 envelope protein binds directly to CD4. This interaction is a prerequisite for viral entry. gp120 also binds to ⍺4ß7, an integrin that is expressed on a subset of memory CD4+ T cells. HIV tropisms for CD4+ T cells and gut tissues are central features of HIV pathogenesis. We report that CD4 binds directly to ⍺4ß7 in a dynamic way, consistent with a cis regulatory interaction. The molecular details of this interaction are related to the way in which gp120 interacts with both receptors. Like MAdCAM-1 and VCAM-1, two recognized ligands of ⍺4ß7, the binding interface on CD4 includes 2 sites (1° and accessory), distributed across its two N-terminal IgSF domains (D1 and D2). The 1° site includes a sequence in the G ß-strand of CD4 D2, KIDIV, that binds directly to ⍺4ß7. This pentapeptide sequence occurs infrequently in eukaryotic proteins. However, a closely related and conserved sequence, KLDIV, appears in the V2 domain of gp120. KLDIV mediates gp120-⍺4ß7 binding. The accessory ⍺4ß7 binding site on CD4 includes Phe43. The Phe43 aromatic ring protrudes outward from one edge of a loop connecting the C'C" strands of CD4 D1. Phe43 is a principal contact for HIV gp120. It interacts with conserved residues in the recessed CD4 binding pocket. Substitution of Phe43 abrogates CD4 binding to both gp120 and ⍺4ß7. As such, the interactions of gp120 with both CD4 and ⍺4ß7 reflect elements of their interactions with each other. These findings indicate that gp120 specificities for CD4 and ⍺4ß7 are interrelated and suggest that selective pressures which produced a CD4 tropic virus that replicates in gut tissues are linked to a dynamic interaction between these two receptors.


Subject(s)
HIV Infections , Integrins , Humans , Integrins/metabolism , Binding Sites , CD4 Antigens , CD4-Positive T-Lymphocytes/metabolism , HIV Envelope Protein gp120/metabolism
11.
Environ Sci Technol Lett ; 10(5): 452-457, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37692200

ABSTRACT

Compared to the myriad of known triggers for rhinitis and asthma, environmental exposure research for atopic dermatitis (AD) is not well established. We recently reported that an untargeted search of U.S. Environmental Protection Agency (EPA) databases versus AD rates by United States (U.S.) postal codes revealed that isocyanates, such as toluene diisocyanate (TDI), are the pollutant class with the strongest spatiotemporal and epidemiologic association with AD. We further demonstrated that (di)isocyanates disrupt ceramide-family lipid production in commensal bacteria and activate the thermo-itch host receptor TRPA1. In this report, we reanalyzed regions of the U.S. with low levels of diisocyanate pollution to assess if a different chemical class may contribute. We identified antimony compounds as the top associated pollutant in such regions. Exposure to antimony compounds would be expected from brake dust in high-traffic areas, smelting plants, bottled water, and dust from aerosolized soil. Like TDI, antimony inhibited ceramide-family lipid production in Roseomonas mucosa and activated TRPA1 in human neurons. While further epidemiologic research will be needed to directly evaluate antimony exposure with surrounding AD prevalence and severity, these data suggest that compounds which are epidemiologically associated with AD, inhibit commensal lipid production, and activate TRPA1 may be causally related to AD pathogenesis.

12.
JCI Insight ; 8(13)2023 07 10.
Article in English | MEDLINE | ID: mdl-37219953

ABSTRACT

Mechanical, thermal, and chemical pain sensation is conveyed by primary nociceptors, a subset of sensory afferent neurons. The intracellular regulation of the primary nociceptive signal is an area of active study. We report here the discovery of a Gß5-dependent regulatory pathway within mechanical nociceptors that restrains antinociceptive input from metabotropic GABA-B receptors. In mice with conditional knockout (cKO) of the gene that encodes Gß5 (Gnb5) targeted to peripheral sensory neurons, we demonstrate the impairment of mechanical, thermal, and chemical nociception. We further report the specific loss of mechanical nociception in Rgs7-Cre+/- Gnb5fl/fl mice but not in Rgs9-Cre+/- Gnb5fl/fl mice, suggesting that Gß5 might specifically regulate mechanical pain in regulator of G protein signaling 7-positive (Rgs7+) cells. Additionally, Gß5-dependent and Rgs7-associated mechanical nociception is dependent upon GABA-B receptor signaling since both were abolished by treatment with a GABA-B receptor antagonist and since cKO of Gß5 from sensory cells or from Rgs7+ cells potentiated the analgesic effects of GABA-B agonists. Following activation by the G protein-coupled receptor Mrgprd agonist ß-alanine, enhanced sensitivity to inhibition by baclofen was observed in primary cultures of Rgs7+ sensory neurons harvested from Rgs7-Cre+/- Gnb5fl/fl mice. Taken together, these results suggest that the targeted inhibition of Gß5 function in Rgs7+ sensory neurons might provide specific relief for mechanical allodynia, including that contributing to chronic neuropathic pain, without reliance on exogenous opioids.


Subject(s)
GTP-Binding Protein beta Subunits , RGS Proteins , Animals , Mice , Receptors, GABA-B/genetics , Receptors, GABA-B/metabolism , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein beta Subunits/metabolism , Nociception , Signal Transduction/physiology , Pain , RGS Proteins/genetics , RGS Proteins/metabolism
13.
Nat Commun ; 14(1): 2836, 2023 05 18.
Article in English | MEDLINE | ID: mdl-37202395

ABSTRACT

One of the key events in viral encephalitis is the ability of virus to enter the central nervous system (CNS). Several encephalitic viruses, including La Crosse Virus (LACV), primarily induce encephalitis in children, but not adults. This phenomenon is also observed in LACV mouse models, where the virus gains access to the CNS of weanling animals through vascular leakage of brain microvessels, likely through brain capillary endothelial cells (BCECs). To examine age and region-specific regulatory factors of vascular leakage, we used genome-wide transcriptomics and targeted siRNA screening to identify genes whose suppression affected viral pathogenesis in BCECs. Further analysis of two of these gene products, Connexin43 (Cx43/Gja1) and EphrinA2 (Efna2), showed a substantial effect on LACV pathogenesis. Induction of Cx43 by 4-phenylbutyric acid (4-PBA) inhibited neurological disease in weanling mice, while Efna2 deficiency increased disease in adult mice. Thus, we show that Efna2 and Cx43 expressed by BCECs are key mediators of LACV-induced neuroinvasion and neurological disease.


Subject(s)
Encephalitis, California , La Crosse virus , Animals , Mice , La Crosse virus/genetics , Encephalitis, California/genetics , Connexin 43 , Endothelial Cells , Age Factors
14.
PLoS One ; 18(3): e0282569, 2023.
Article in English | MEDLINE | ID: mdl-36877675

ABSTRACT

We recently used EPA databases to identify that isocyanates, most notably toluene diisocyanate (TDI), were the pollutant class with the strongest spatiotemporal and epidemiologic association with atopic dermatitis (AD). Our findings demonstrated that isocyanates like TDI disrupted lipid homeostasis and modeled benefit in commensal bacteria like Roseomonas mucosa through disrupting nitrogen fixation. However, TDI has also been established to activate transient receptor potential ankyrin 1 (TRPA1) in mice and thus could directly contribute to AD through induction of itch, rash, and psychological stress. Using cell culture and mouse models, we now demonstrate that TDI induced skin inflammation in mice as well as calcium influx in human neurons; each of these findings were dependent on TRPA1. Furthermore, TRPA1 blockade synergized with R. mucosa treatment in mice to improve TDI-independent models of AD. Finally, we show that the cellular effects of TRPA1 are related to shifting the balance of the tyrosine metabolites epinephrine and dopamine. This work provides added insight into the potential role, and therapeutic potential, or TRPA1 in the pathogenesis of AD.


Subject(s)
Dermatitis, Atopic , Exanthema , Toluene 2,4-Diisocyanate , Humans , Animals , Mice , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Pruritus , Isocyanates , Cytoskeletal Proteins , TRPA1 Cation Channel
15.
bioRxiv ; 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36789428

ABSTRACT

Pro-inflammatory T cells co-express multiple chemokine receptors, but the distinct functions of individual receptors on these cells are largely unknown. Human Th17 cells uniformly express the chemokine receptor CCR6, and we discovered that the subgroup of CD4+CCR6+ cells that co-express CCR2 possess a pathogenic Th17 signature, can produce inflammatory cytokines independent of TCR activation, and are unusually efficient at transendothelial migration (TEM). The ligand for CCR6, CCL20, was capable of binding to activated endothelial cells (ECs) and inducing firm arrest of CCR6+CCR2+ cells under conditions of flow - but CCR6 could not mediate TEM. By contrast, CCL2 and other ligands for CCR2, despite being secreted from both luminal and basal sides of ECs, failed to bind to the EC surfaces - and CCR2 could not mediate arrest. Nonetheless, CCR2 was required for TEM. To understand if CCR2's inability to mediate arrest was due solely to an absence of EC-bound ligands, we generated a CCL2-CXCL9 chimeric chemokine that could bind to the EC surface. Although display of CCL2 on the ECs did indeed lead to CCR2-mediated arrest of CCR6+CCR2+ cells, activating CCR2 with surface-bound CCL2 blocked TEM. We conclude that mediating arrest and TEM are mutually exclusive activities of chemokine receptors and/or their ligands that depend, respectively, on chemokines that bind to the EC luminal surfaces versus non-binding chemokines that form transendothelial gradients under conditions of flow. Our findings provide fundamental insights into mechanisms of lymphocyte extravasation and may lead to novel strategies to block or enhance their migration into tissue.

16.
Cell Death Differ ; 30(2): 589-604, 2023 02.
Article in English | MEDLINE | ID: mdl-36624264

ABSTRACT

Kinase signaling in the tiered activation of inflammasomes and associated pyroptosis is a prime therapeutic target for inflammatory diseases. While MAPKs subsume pivotal roles during inflammasome priming, specifically the MAP3K7/JNK1/NLRP3 licensing axis, their involvement in successive steps of inflammasome activation is poorly defined. Using live-cell MAPK biosensors to focus on the inflammasome triggering event allowed us to identify a subsequent process of biphasic JNK activation. We find that this biphasic post-trigger JNK signaling initially facilitates the mitochondrial reactive oxygen species generation needed to support core inflammasome formation, then supports the gasdermin-mediated cell permeation required for release of active IL-1ß from human macrophages. We further identify and characterize a xanthine oxidase-ROS activated MAP3K5/JNK2 substrate licensing complex as a novel regulator of the GSDMD mobilization which precedes pyroptosis. We show that inhibitors targeting this MAP3K5 cascade alleviate morbidity in mouse models of colitis and dampen both augmented IL-1ß release and cell permeation in monocytes derived from patients with gain-of-function inflammasomopathies.


Subject(s)
Inflammasomes , Pyroptosis , Animals , Humans , Mice , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Macrophages/metabolism , MAP Kinase Signaling System , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/physiology , Signal Transduction
17.
bioRxiv ; 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38313277

ABSTRACT

The microenvironment is an important regulator of intertumoral trafficking and activity of immune cells. Understanding how the immune system can be tailored to maintain anti-tumor killing responses in metastatic disease remains an important goal. Thus, immune mediated eradication of metastasis requires the consideration of organ specific microenvironmental cues. Using a xenograft model of melanoma metastasis in adult zebrafish, we perturbed the dynamic balance between the infiltrating immune cells in the metastatic setting using a suite of different transgenic zebrafish. We employed intravital imaging coupled with metabolism imaging (FLIM) to visualize and map the organ specific metabolism with near simultaneity in multiple metastatic lesions. Of all the MHC complexes examined for brain and skeletal metastases, we determined that there is an organ specific expression of mhc1uba (human ortholog, MR1) for both the melanoma cells and the resident and infiltrating immune cells. Specifically, immune clusters did not express mhc1uba in brain metastatic lesions in immune competent fish. Finally, the differential immune response drove organ specific metabolism where tumor glycolysis was increased in brain metastases compared to skeletal and parental lines as measured using fluorescence lifetime imaging microscopy (FLIM). As MR1 belongs to the MHC class I molecules and is a target of immunotherapeutic drugs, we believe that our data presents an opportunity to understand the relationship between organ specific tumor metabolism and drug efficacy in the metastatic setting.

18.
Curr Protoc ; 2(10): e575, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36300895

ABSTRACT

The Sleeping Beauty (SB) transposon system is an efficient non-viral tool for gene transfer into a variety of cells, including human cells. Through a cut-and-paste mechanism, your favorite gene (YFG) is integrated into AT-rich regions within the genome, providing stable long-term expression of the transfected gene. The SB system is evolving and has become a powerful tool for gene therapy. There are no safety concerns using this system, the handling is easy, and the time required to obtain a stable cell line is significantly reduced compared to other systems currently available. Here, we present a novel application of this system to generate, within 8 days, a stable producer HEK293T cell line capable of constitutively delivering enveloped virus-like particles (eVLPs) for vaccination. We provide step-by-step protocols for generation of the SB transposon constructs, transfection procedures, and validation of the produced eVLPs. We next describe a method to pseudotype the constitutively produced eVLPs using the Spike protein derived from the SARS-CoV-2 virus (by coating the eVLP capsid with the heterologous antigen). We also describe optimization methods to scale up the production of pseudotyped eVLPs in a laboratory setting (from 100 µg to 5 mg). © Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol 1: Generation of the SB plasmids Basic Protocol 2: Generation of a stable HEK293T cell line constitutively secreting MLV-based eVLPs Basic Protocol 3: Evaluation of the SB constructs by immunofluorescence assay Basic Protocol 4: Validation of eVLPs by denaturing PAGE and western blot Alternate Protocol 1: Analysis of SARS-CoV-2 Spike protein oligomerization using blue native gel electrophoresis and western blot Alternate Protocol 2: Evaluation of eVLP quality by electron microscopy (negative staining) Basic Protocol 5: Small-scale production of eVLPs Alternate Protocol 3: Large-scale production of eVLPs (up to about 1 to 3 mg VLPs) Alternate Protocol 4: Large-scale production of eVLPs (up to about 3 to 5 mg VLPs) Support Protocol: Quantification of total protein concentration by Bradford assay.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/genetics , SARS-CoV-2/genetics , HEK293 Cells , COVID-19/prevention & control , Vaccination , Antigens, Heterophile
19.
J Exp Med ; 219(6)2022 06 06.
Article in English | MEDLINE | ID: mdl-35551368

ABSTRACT

Inborn errors of immunity (IEIs) unveil regulatory pathways of human immunity. We describe a new IEI caused by mutations in the GTPase of the immune-associated protein 6 (GIMAP6) gene in patients with infections, lymphoproliferation, autoimmunity, and multiorgan vasculitis. Patients and Gimap6-/- mice show defects in autophagy, redox regulation, and polyunsaturated fatty acid (PUFA)-containing lipids. We find that GIMAP6 complexes with GABARAPL2 and GIMAP7 to regulate GTPase activity. Also, GIMAP6 is induced by IFN-γ and plays a critical role in antibacterial immunity. Finally, we observed that Gimap6-/- mice died prematurely from microangiopathic glomerulosclerosis most likely due to GIMAP6 deficiency in kidney endothelial cells.


Subject(s)
GTP Phosphohydrolases , Immunologic Deficiency Syndromes , Animals , Autophagy , Endothelial Cells/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Humans , Inflammation , Mice
20.
Cell ; 185(7): 1172-1188.e28, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35303419

ABSTRACT

Intestinal mucus forms the first line of defense against bacterial invasion while providing nutrition to support microbial symbiosis. How the host controls mucus barrier integrity and commensalism is unclear. We show that terminal sialylation of glycans on intestinal mucus by ST6GALNAC1 (ST6), the dominant sialyltransferase specifically expressed in goblet cells and induced by microbial pathogen-associated molecular patterns, is essential for mucus integrity and protecting against excessive bacterial proteolytic degradation. Glycoproteomic profiling and biochemical analysis of ST6 mutations identified in patients show that decreased sialylation causes defective mucus proteins and congenital inflammatory bowel disease (IBD). Mice harboring a patient ST6 mutation have compromised mucus barriers, dysbiosis, and susceptibility to intestinal inflammation. Based on our understanding of the ST6 regulatory network, we show that treatment with sialylated mucin or a Foxo3 inhibitor can ameliorate IBD.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Sialyltransferases/genetics , Animals , Homeostasis , Humans , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Mice , Mucus/metabolism , Sialyltransferases/metabolism , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...